TY - JOUR A1 - Lückerath, Katharina A1 - Lapa, Constantin A1 - Spahmann, Annika A1 - Jörg, Gerhard A1 - Samnick, Samuel A1 - Rosenwald, Andreas A1 - Einsele, Herrmann A1 - Knop, Stefan A1 - Buck, Andreas T1 - Targeting Paraprotein Biosynthesis for Non-Invasive Characterization of Myeloma Biology N2 - Purpose Multiple myeloma is a hematologic malignancy originating from clonal plasma cells. Despite effective therapies, outcomes are highly variable suggesting marked disease heterogeneity. The role of functional imaging for therapeutic management of myeloma, such as positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG-PET), remains to be determined. Although some studies already suggested a prognostic value of 18F-FDG-PET, more specific tracers addressing hallmarks of myeloma biology, e.g. paraprotein biosynthesis, are needed. This study evaluated the amino acid tracers L-methyl-[11C]-methionine (11C-MET) and [18F]-fluoroethyl-L-tyrosine (18F-Fet) for their potential to image myeloma and to characterize tumor heterogeneity. Experimental Design To study the utility of 11C-MET, 18F-Fet and 18F-FDG for myeloma imaging, time activity curves were compared in various human myeloma cell lines (INA-6, MM1.S, OPM-2) and correlated to cell-biological characteristics, such as marker gene expression and immunoglobulin levels. Likewise, patient-derived CD138+ plasma cells were characterized regarding uptake and biomedical features. Results Using myeloma cell lines and patient-derived CD138+ plasma cells, we found that the relative uptake of 11C-MET exceeds that of 18F-FDG 1.5- to 5-fold and that of 18F-Fet 7- to 20-fold. Importantly, 11C-MET uptake significantly differed between cell types associated with worse prognosis (e.g. t(4;14) in OPM-2 cells) and indolent ones and correlated with intracellular immunoglobulin light chain and cell surface CD138 and CXCR4 levels. Direct comparison of radiotracer uptake in primary samples further validated the superiority of 11C-MET. Conclusion These data suggest that 11C-MET might be a versatile biomarker for myeloma superior to routine functional imaging with 18F-FDG regarding diagnosis, risk stratification, prognosis and discrimination of tumor subtypes. KW - Myelomas KW - Antibodies KW - Positron emission tomography KW - Myeloma cells KW - cell staining KW - lesions KW - biosynthesis KW - bone marrow cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111319 ER - TY - JOUR A1 - Lückerath, Katharina A1 - Lapa, Constantin A1 - Malzahn, Uwe A1 - Samnick, Samuel A1 - Einsele, Herrmann A1 - Buck, Andreas K. A1 - Herrmann, Ken A1 - Knop, Stefan T1 - 18FDG-PET/CT for prognostic stratification of patients with multiple myeloma relapse after stem cell transplantation N2 - The aim of this study was to investigate the prognostic value of 18F-fluoro-deoxyglucose positron emission tomography–computed tomography (18F-FDG-PET/CT) in 37 patients with a history of multiple myeloma (MM) and suspected or confirmed recurrence after stem cell transplantation (SCT). All patients had been heavily pre-treated. Time to progression (TTP) and overall survival (OS) were correlated to a number of different PET-derived as well as clinical parameters. Impact on patient management was assessed. Absence of FDG-avid MM foci was a positive prognostic factor for both TTP and OS (p<0.01). Presence of >10 focal lesions correlated with both TTP (p<0.01) and OS (p<0.05). Interestingly, presence of >10 lesions in the appendicular skeleton proved to have the strongest association with disease progression. Intensity of glucose uptake and presence of extramedullary disease were associated with shorter TTP (p=0.037 and p=0.049, respectively). Manifestations in soft tissue structures turned out to be a strong negative predictor for both, TTP and OS (p<0.01, respectively). PET resulted in a change of management in 30% of patients. Our data underline the prognostic value of 18F-FDG-PET/CT in MM patients also in the setting of post-SCT relapse. PET/CT has a significant impact on patient management. KW - 18FDG-PET/CT KW - Multiple myeloma KW - molecular imaging KW - FDG-PET/CT Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113107 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Lapa, Constantin A1 - Bluemel, Christina A1 - Lückerath, Katharina A1 - Schirbel, Andreas A1 - Strate, Alexander A1 - Buck, Andreas K. A1 - Herrmann, Ken T1 - Influence of the amount of co-infused amino acids on post-therapeutic potassium levels in peptide receptor radionuclide therapy N2 - Background Peptide receptor radionuclide therapy (PRRT) is routinely used for advanced or metastasized neuroendocrine tumours (NET). To prevent nephrotoxicity, positively charged amino acids (AA) are co-infused. The aim of this study was to correlate the risk for therapy-related hyperkalaemia with the total amount of AA infused. Methods Twenty-two patients undergoing PRRT with standard activities of 177Lu-DOTATATE/-TOC were monitored during two following treatment cycles with co-infusion of 75 and 50 g of AA (L-arginine and L-lysine), respectively. Mean serum levels of potassium and other parameters (glomerular filtration rate [GFR], creatinine, blood urea nitrogen [BUN], phosphate, chloride, lactate dehydrogenase) prior to, 4 h and 24 h after AA infusion were compared. Results Self-limiting hyperkalaemia (>5.0 mmol/l) resolving after 24 h occurred in 91% (20/22) of patients in both protocols. Potassium levels, BUN, creatinine, GFR, phosphate, chloride and LDH showed a similar range at 4 h after co-infusion of 75 or 50 g of AA, respectively (p > 0.05). Only GFR and creatinine levels at 24 h varied significantly between the two co-infusion protocols (p < 0.05). Conclusions Hyperkalaemia is a frequent side effect of AA infusion in PRRT. Varying the dose of co-infused amino acids did not impact on the incidence and severity of hyperkalaemia. KW - NET KW - PRRT KW - Hyperkalaemia KW - Arginine KW - Lysine Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110617 ER - TY - JOUR A1 - Lückerath, Katharina A1 - Lapa, Constantin A1 - Albert, Christa A1 - Herrmann, Ken A1 - Jörg, Gerhard A1 - Samnick, Samuel A1 - Einsele, Herrmann A1 - Knop, Stefan A1 - Buck, Andreas K. T1 - \(^{11}\)C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma JF - Oncotarget N2 - Multiple myeloma (MM) remains an essentially incurable hematologic malignancy. However, new treatment modalities and novel drugs have been introduced and thus additional tools for therapy monitoring are increasingly needed. Therefore, we evaluated the radiotracers \(^{11}\)C-Methionine (paraprotein-biosynthesis) and \(^{18}\)F-FDG (glucose-utilization) for monitoring response to anti-myeloma-therapy and outcome prediction. Influence of proteasome-inhibition on radiotracer-uptake of different MM cell-lines and patient-derived CD138\(^{+}\) plasma cells was analyzed and related to tumor-biology. Mice xenotransplanted with MM. 1S tumors underwent MET- and FDG-\(\mu\)PET. Tumor-to-background ratios before and after 24 h, 8 and 15 days treatment with bortezomib were correlated to survival. Treatment reduced both MET and FDG uptake; changes in tracer-retention correlated with a switch from high to low CD138-expression. In xenotransplanted mice, MET-uptake significantly decreased by 30-79% as early as 24 h after bortezomib injection. No significant differences were detected thus early with FDG. This finding was confirmed in patient-derived MM cells. Importantly, early reduction of MET-but not FDG-uptake correlated with improved survival and reduced tumor burden in mice. Our results suggest that MET is superior to FDG in very early assessment of response to anti-myeloma-therapy. Early changes in MET-uptake have predictive potential regarding response and survival. MET-PET holds promise to individualize therapies in MM in future. KW - positron emission tomography KW - imaging techniques KW - experience KW - \(^{11}\)C-Methionine-PET KW - treatment response KW - molecular imaging KW - multiple myeloma KW - management KW - \(^{18}\)F-FDG PET/CT KW - bone disease KW - stem-cell transplantation KW - esophagogastric junction Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148688 VL - 6 IS - 10 ER - TY - JOUR A1 - Lapa, Constantin A1 - Linsenmann, Thomas A1 - Lückerath, Katharina A1 - Samnick, Samuel A1 - Herrmann, Ken A1 - Stoffer, Carolin A1 - Ernestus, Ralf-Ingo A1 - Buck, Andreas K. A1 - Löhr, Mario A1 - Monoranu, Camelia-Maria T1 - Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy? JF - PLoS One N2 - Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10% to >50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM. KW - glioma KW - positron emission tomography KW - glioblastoma multiforme KW - macrophages KW - somatostatin KW - microglial cells KW - immunostaining KW - magnetic resonance imaging Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125498 VL - 10 IS - 3 ER - TY - JOUR A1 - Philipp-Abbrederis, Kathrin A1 - Herrmann, Ken A1 - Knop, Stefan A1 - Schottelius, Margret A1 - Eiber, Matthias A1 - Lückerath, Katharina A1 - Pietschmann, Elke A1 - Habringer, Stefan A1 - Gerngroß, Carlos A1 - Franke, Katharina A1 - Rudelius, Martina A1 - Schirbel, Andreas A1 - Lapa, Constantin A1 - Schwamborn, Kristina A1 - Steidle, Sabine A1 - Hartmann, Elena A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Beer, Ambros J A1 - Peschel, Christian A1 - Einsele, Hermann A1 - Buck, Andreas K A1 - Schwaiger, Markus A1 - Götze, Katharina A1 - Wester, Hans-Jürgen A1 - Keller, Ulrich T1 - In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma JF - EMBO Molecular Medicine N2 - CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases. KW - FDG PET/CT KW - cells KW - CXCR4/SDF-1 KW - CXCR4 KW - multiple myeloma KW - positron emission tomography KW - chemokine receptor KW - in vivo imaging KW - malignancies KW - involvement KW - microenvironment KW - survival KW - cancer KW - autologous transplantation KW - bone disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148738 VL - 7 IS - 4 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Beykan, Seval A1 - Higuchi, Takahiro A1 - Lückerath, Katharina A1 - Weich, Alexander A1 - Scheurlen, Michael A1 - Bluemel, Christina A1 - Herrmann, Ken A1 - Buck, Andreas K. A1 - Lassmann, Michael A1 - Lapa, Constantin A1 - Hänscheid, Heribert T1 - The impact of \(^{177}\)Lu-octreotide therapy on \(^{99m}\)Tc-MAG3 clearance is not predictive for late nephropathy JF - Oncotarget N2 - Peptide Receptor Radionuclide Therapy (PRRT) for the treatment of neuroendocrine tumors may lead to kidney deterioration. This study aimed to evaluate the suitability of \(^{99m}\)Tc-mercaptoacetyltriglycine (\(^{99m}\)Tc-MAG3) clearance for the early detection of PRRT-induced changes on tubular extraction (TE). TE rate (TER) was measured prior to 128 PRRT cycles (7.6±0.4 GBq \(^{177}\)Lu-octreotate/octreotide each) in 32 patients. TER reduction during PRRT was corrected for age-related decrease and analyzed for the potential to predict loss of glomerular filtration (GF). The GF rate (GFR) as measure for renal function was derived from serum creatinine. The mean TER was 234 ± 53 ml/min/1.73 m² before PRRT (baseline) and 221 ± 45 ml/min/1.73 m² after a median follow-up of 370 days. The age-corrected decrease (mean: -3%, range: -27% to +19%) did not reach significance (p=0.09) but significantly correlated with the baseline TER (Spearman p=-0.62, p<0.001). Patients with low baseline TER showed an improved TER after PRRT, high decreases were only observed in individuals with high baseline TER. Pre-therapeutic TER data were inferior to plasma creatinine-derived GFR estimates in predicting late nephropathy. TER assessed by \(^{99m}\)Tc-MAG3­clearance prior to and during PRRT is not suitable as early predictor of renal injury and an increased risk for late nephropathy. KW - renal scintigraphy KW - neuroendocrine tumor KW - 177Lu KW - MAG3 KW - PRRT Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177318 VL - 7 IS - 27 ER - TY - JOUR A1 - Lapa, Constantin A1 - Lückerath, Katharina A1 - Kleinlein, Irene A1 - Monoranu, Camelia Maria A1 - Linsenmann, Thomas A1 - Kessler, Almuth F. A1 - Rudelius, Martina A1 - Kropf, Saskia A1 - Buck, Andreas K. A1 - Ernestus, Ralf-Ingo A1 - Wester, Hans-Jürgen A1 - Löhr, Mario A1 - Herrmann, Ken T1 - \(^{68}\)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma JF - Theranostics N2 - Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand \(^{68}\)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent \(^{68}\)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-\(^{18}\)F-fluoroethyl)-L-tyrosine (\(^{18}\)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUV\(_{max}\), SUV\(_{mean}\)). Tumor-to-background ratios (TBR) were calculated for both PET probes. \(^{68}\)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. \(^{68}\)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUV\(_{mean}\) and SUV\(_{max}\) of 3.0±1.5 and 3.9±2.0 respectively. Respective values for \(^{18}\)F-FET were 4.4±2.0 (SUV\(_{mean}\)) and 5.3±2.3 (SUV\(_{max}\)). TBR for SUV\(_{mean}\) and SUV\(_{max}\) were higher for \(^{68}\)Ga-Pentixafor than for \(^{18}\)F-FET (SUV\(_{mean}\) 154.0±90.7 vs. 4.1±1.3; SUV\(_{max}\) 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high \(^{68}\)Ga-Pentixafor uptake; regions of the same tumor without apparent \(^{68}\)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, \(^{68}\)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, \(^{68}\)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy. KW - imaging KW - chemokine receptor-4 KW - glioblastoma KW - positron emission tomography/computed tomography KW - \(^{68}\)Ga-Pentixafor Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168174 VL - 6 IS - 3 ER - TY - JOUR A1 - Fecher, David A1 - Hofmann, Elisabeth A1 - Buck, Andreas A1 - Bundschuh, Ralph A1 - Nietzer, Sarah A1 - Dandekar, Gudrun A1 - Walles, Thorsten A1 - Walles, Heike A1 - Lückerath, Katharina A1 - Steinke, Maria T1 - Human Organotypic Lung Tumor Models: Suitable For Preclinical \(^{18}\)F-FDG PET-Imaging JF - PLoS ONE N2 - Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[\(^{18}\)F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. KW - lung and intrathoracic tumors KW - trachea KW - adenocarcinoma of the lung KW - cancer treatment KW - secondary lung tumors KW - pulmonary imaging KW - extracellular matrix KW - collagens Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179678 VL - 11 IS - 8 ER - TY - JOUR A1 - Lapa, Constantin A1 - Kircher, Stefan A1 - Schirbel, Andreas A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Pelzer, Theo A1 - Walles, Thorsten A1 - Buck, Andreas K. A1 - Weber, Wolfgang A. A1 - Wester, Hans-Juergen A1 - Herrmann, Ken A1 - Lückerath, Katharina T1 - Targeting CXCR4 with [\(^{68}\)Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma? JF - Oncotarget N2 - C-X-C motif chemokine receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer. This study investigated the feasibility of CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using [\(^{68}\)Ga]Pentixafor in malignant pleural mesothelioma. Six patients with pleural mesothelioma underwent [\(^{68}\)Ga]Pentixafor-PET/CT. 2′-[\(^{18}\)F]fluoro-2′-deoxy-D-glucose ([\(^{18}\)F]FDG)-PET/CT (4/6 patients) and immunohistochemistry obtained from biopsy or surgery (all) served as standards of reference. Additionally, 9 surgical mesothelioma samples were available for histological work-up. Whereas [\(^{18}\)F]FDG-PET depicted active lesions in all patients, [\(^{68}\)Ga]Pentixafor-PET/CT recorded physiologic tracer distribution and none of the 6 patients presented [\(^{68}\)Ga]Pentixafor-positive lesions. This finding paralleled results of immunohistochemistry which also could not identify relevant CXCR4 surface expression in the samples analyzed. In contrast to past reports, our data suggest widely absence of CXCR4 expression in pleural mesothelioma. Hence, robust cell surface expression should be confirmed prior to targeting this chemokine receptor for diagnosis and/or therapy. KW - PET KW - CXCR4 KW - [\(^{68}\)Ga] pentixafor KW - pleural mesothelioma KW - theranostics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169989 VL - 8 IS - 57 ER -