TY - JOUR A1 - Endesfelder, Ulrike A1 - Malkusch, Sebastian A1 - Flottmann, Benjamin A1 - Mondry, Justine A1 - Liguzinski, Piotr A1 - Verveer, Peter J. A1 - Heilemann, Mike T1 - Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy N2 - We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy. KW - Super-Resolution Microscopy KW - photoswitchable organic fluorophores KW - fluorescent proteins KW - super-resolution KW - PALM KW - dSTORM Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74896 ER - TY - JOUR A1 - Endesfelder, Ulrike A1 - Malkusch, Sebastian A1 - Flottmann, Benjamin A1 - Mondry, Justine A1 - Liguzinski, Piotr A1 - Verveer, Peter J. A1 - Heilemann, Mike T1 - Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy JF - Molecules N2 - We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy. KW - Photoactivated localization microscopy KW - Fusion proteins KW - Molecules KW - Patterns KW - Switch KW - Limit KW - Time KW - photoswitchable organic fluorophores KW - fluorescent proteins KW - super-resolution KW - PALM KW - dSTORM Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134080 VL - 16 IS - 4 ER - TY - JOUR A1 - Muranyi, Walter A1 - Malkusch, Sebastian A1 - Müller, Barbara A1 - Heilemann, Mike A1 - Kräusslich, Hans-Georg T1 - Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail JF - PLoS Pathogens N2 - The inner structural Gag proteins and the envelope (Env) glycoproteins of human immunodeficiency virus (HIV-1) traffic independently to the plasma membrane, where they assemble the nascent virion. HIV-1 carries a relatively low number of glycoproteins in its membrane, and the mechanism of Env recruitment and virus incorporation is incompletely understood. We employed dual-color super-resolution microscopy visualizing Gag assembly sites and HIV-1 Env proteins in virus-producing and in Env expressing cells. Distinctive HIV-1 Gag assembly sites were readily detected and were associated with Env clusters that always extended beyond the actual Gag assembly site and often showed enrichment at the periphery and surrounding the assembly site. Formation of these Env clusters depended on the presence of other HIV-1 proteins and on the long cytoplasmic tail (CT) of Env. CT deletion, a matrix mutation affecting Env incorporation or Env expression in the absence of other HIV-1 proteins led to much smaller Env clusters, which were not enriched at viral assembly sites. These results show that Env is recruited to HIV-1 assembly sites in a CT-dependent manner, while Env\((\Delta CT)\) appears to be randomly incorporated. The observed Env accumulation surrounding Gag assemblies, with a lower density on the actual bud, could facilitate viral spread in vivo. Keeping Env molecules on the nascent virus low may be important for escape from the humoral immune response, while cell-cell contacts mediated by surrounding Env molecules could promote HIV-1 transmission through the virological synapse. KW - ENV KW - fluorescent-probes KW - type-1 matrix KW - glycoprotein incorporation KW - GP41 cytoplasmic tail KW - human immunodeficiency virus KW - cellular proteins KW - plasma membrane KW - virions KW - particles Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131235 VL - 9 IS - 2 ER - TY - JOUR A1 - Weinelt, Nadine A1 - Karathanasis, Christos A1 - Smith, Sonja A1 - Medler, Juliane A1 - Malkusch, Sebastian A1 - Fulda, Simone A1 - Wajant, Harald A1 - Heilemann, Mike A1 - van Wijk, Sjoerd J. L. T1 - Quantitative single‐molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα‐induced NF‐ĸB signaling JF - Journal of Leukocyte Biology N2 - TNFR1 is a crucial regulator of NF‐ĸB‐mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα‐ and TNFR1‐controlled NF‐ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2‐mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single‐molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1‐mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand‐independent preligand assembly domain (PLAD)‐mediated TNFR1 dimerization as well as TNFα‐induced TNFR1 oligomerization. In addition, zafirlukast‐mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF‐ĸB signaling in reconstituted TNFR1‐mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD‐mediated, ligand‐independent TNFR1 dimerization for NF‐ĸB activation, highlight the PLAD as central regulator of TNFα‐induced TNFR1 oligomerization, and demonstrate that TNFR1‐mEos2 MEFs can be used to investigate TNFR1‐antagonizing compounds employing single‐molecule quantification and functional NF‐ĸB assays at physiologic conditions. KW - Single‐Molecule Localization Microscopy (SMLM) KW - Pre‐Ligand Assembly Domain (PLAD) KW - Cysteine‐Rich Domain (CRD) KW - CysLTR1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215960 VL - 109 IS - 2 SP - 363 EP - 371 ER -