TY - JOUR A1 - Ronchi, Cristina L. A1 - Sbiera, Silviu A1 - Volante, Marco A1 - Steinhauer, Sonja A1 - Scott-Wild, Vanessa A1 - Altieri, Barbara A1 - Kroiss, Matthias A1 - Bala, Margarita A1 - Papotti, Mauro A1 - Deutschbein, Timo A1 - Terzolo, Massimo A1 - Fassnacht, Martin A1 - Allolio, Bruno T1 - CYP2W1 Is Highly Expressed in Adrenal Glands and Is Positively Associated with the Response to Mitotane in Adrenocortical Carcinoma N2 - Background Adrenocortical tumors comprise frequent adenomas (ACA) and rare carcinomas (ACC). Human cytochrome P450 2W1 (CYP2W1) is highly expressed in some cancers holding the potential to activate certain drugs into tumor cytotoxins. Objective To investigate the CYP2W1 expression in adrenal samples and its relationship with clinical outcome in ACC. Material and Methods CYP2W1 expression was investigated by qRT-PCR in 13 normal adrenal glands, 32 ACA, 25 ACC, and 9 different non-adrenal normal tissue samples and by immunohistochemistry in 352 specimens (23 normal adrenal glands, 33 ACA, 239 ACC, 67 non-adrenal normal or neoplastic samples). Results CYP2W1 mRNA expression was absent/low in normal non-adrenal tissues, but high in normal and neoplastic adrenal glands (all P<0.01 vs non-adrenal normal tissues). Accordingly, CYP2W1 immunoreactivity was absent/low (H-score 0–1) in 72% of non-adrenal normal tissues, but high (H-score 2–3) in 44% of non-adrenal cancers, in 65% of normal adrenal glands, in 62% of ACAs and in 50% of ACCs (all P<0.001 vs non-adrenal normal tissues), being significantly increased in steroid-secreting compared to non-secreting tumors. In ACC patients treated with mitotane only, high CYP2W1 immunoreactivity adjusted for ENSAT stage was associated with longer overall survival and time to progression (P<0.05 and P<0.01, respectively), and with a better response to therapy both as palliative (response/stable disease in 42% vs 6%, P<0.01) or adjuvant option (absence of disease recurrence in 69% vs 45%, P<0.01). Conclusion CYP2W1 is highly expressed in both normal and neoplastic adrenal glands making it a promising tool for targeted therapy in ACC. Furthermore, CYP2W1 may represent a new predictive marker for the response to mitotane treatment. KW - CYP2W1 KW - cancer treatment KW - adrenal glands KW - carcinomas KW - drug therapy KW - hormones KW - immune response KW - immunohistochemistry techniques KW - surgical oncology Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113096 ER - TY - JOUR A1 - Doghman-Bouguerra, Mabrouka A1 - Finetti, Pascal A1 - Durand, Nelly A1 - Parise, Ivy Zortéa S. A1 - Sbiera, Silviu A1 - Cantini, Giulia A1 - Canu, Letizia A1 - Hescot, Ségolène A1 - Figueiredo, Mirna M. O. A1 - Komechen, Heloisa A1 - Sbiera, Iuliu A1 - Nesi, Gabriella A1 - Paci, Angelo A1 - Al Ghuzlan, Abir A1 - Birnbaum, Daniel A1 - Baudin, Eric A1 - Luconi, Michaela A1 - Fassnacht, Martin A1 - Figueiredo, Bonald C. A1 - Bertucci, François A1 - Lalli, Enzo T1 - Cancer-testis antigen FATE1 expression in adrenocortical tumors is associated with a pervasive autoimmune response and is a marker of malignancy in adult, but not children, ACC JF - Cancers N2 - The SF-1 transcription factor target gene FATE1 encodes a cancer-testis antigen that has an important role in regulating apoptosis and response to chemotherapy in adrenocortical carcinoma (ACC) cells. Autoantibodies directed against FATE1 were previously detected in patients with hepatocellular carcinoma. In this study, we investigated the prevalence of circulating anti-FATE1 antibodies in pediatric and adult patients with adrenocortical tumors using three different methods (immunofluorescence, ELISA and Western blot). Our results show that a pervasive anti-FATE1 immune response is present in those patients. Furthermore, FATE1 expression is a robust prognostic indicator in adult patients with ACC and is associated with increased steroidogenic and decreased immune response gene expression. These data can open perspectives for novel strategies in ACC immunotherapy. KW - adrenocortical carcinoma KW - cancer-testis antigens KW - autoantibodies KW - immune response Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203211 SN - 2072-6694 VL - 12 IS - 3 ER - TY - JOUR A1 - Weigand, Isabel A1 - Ronchi, Cristina L. A1 - Vanselow, Jens T. A1 - Bathon, Kerstin A1 - Lenz, Kerstin A1 - Herterich, Sabine A1 - Schlosser, Andreas A1 - Kroiss, Matthias A1 - Fassnacht, Martin A1 - Calebiro, Davide A1 - Sbiera, Silviu T1 - PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser\(^{114}\) phosphorylation JF - Science Advances N2 - Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing’s syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing’s syndrome. KW - mutation triggers KW - phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270445 VL - 7 IS - 8 ER - TY - JOUR A1 - Tamburello, Mariangela A1 - Altieri, Barbara A1 - Sbiera, Iuliu A1 - Sigala, Sandra A1 - Berruti, Alfredo A1 - Fassnacht, Martin A1 - Sbiera, Silviu T1 - FGF/FGFR signaling in adrenocortical development and tumorigenesis: novel potential therapeutic targets in adrenocortical carcinoma JF - Endocrine N2 - FGF/FGFR signaling regulates embryogenesis, angiogenesis, tissue homeostasis and wound repair by modulating proliferation, differentiation, survival, migration and metabolism of target cells. Understandably, compelling evidence for deregulated FGF signaling in the development and progression of different types of tumors continue to emerge and FGFR inhibitors arise as potential targeted therapeutic agents, particularly in tumors harboring aberrant FGFR signaling. There is first evidence of a dual role of the FGF/FGFR system in both organogenesis and tumorigenesis, of which this review aims to provide an overview. FGF-1 and FGF-2 are expressed in the adrenal cortex and are the most powerful mitogens for adrenocortical cells. Physiologically, they are involved in development and maintenance of the adrenal gland and bind to a family of four tyrosine kinase receptors, among which FGFR1 and FGFR4 are the most strongly expressed in the adrenal cortex. The repeatedly proven overexpression of these two FGFRs also in adrenocortical cancer is thus likely a sign of their participation in proliferation and vascularization, though the exact downstream mechanisms are not yet elucidated. Thus, FGFRs potentially offer novel therapeutic targets also for adrenocortical carcinoma, a type of cancer resistant to conventional antimitotic agents. KW - FGF-pathway KW - FGFR KW - FGFR-inhibitors KW - adrenocortical development KW - adrenocortical tumors Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324420 VL - 77 IS - 3 ER -