TY - JOUR A1 - Wohlgemuth, Matthias A1 - Mitric, Roland T1 - Photochemical Chiral Symmetry Breaking in Alanine JF - Journal of Physical Chemistry A N2 - We introduce a general theoretical approach for the simulation of photochemical dynamics under the influence of circularly polarized light to explore the possibility of generating enantiomeric enrichment through polarized-light-selective photochemistry. The method is applied to the simulation of the photolysis of alanine, a prototype chiral amino acid. We show that a systematic enantiomeric enrichment can be obtained depending on the helicity of the circularly polarized light that induces the excited-state photochemistry of alanine. By analyzing the patterns of the photoinduced fragmentation of alanine we find an inducible enantiomeric enrichment up to 1.7%, which is also in good correspondence to the experimental findings. Our method is generally applicable to complex systems and might serve to systematically explore the photochemical origin of homochirality. KW - circularly-polarized light KW - amino-acids KW - homochirality KW - molecular dynamics KW - dichroism Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158557 UR - https://pubs.acs.org/doi/10.1021/acs.jpca.6b07611 N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpca.6b07611 VL - 45 IS - 120 ER -