TY - THES A1 - Hose, Eleonore T1 - Untersuchungen zum radialen Abscisinsäure- und Wassertransport in Wurzeln von Helianthus annuus L. und Zea mays L. N2 - Mit den Experimenten dieser Arbeit konnte erstmals gezeigt werden, dass ein Phytohormon wie Abscisinsäure mit dem "Solvent-drag" des Wasserflusses apoplastisch durch den Wurzelzellwandbereich in die Xylemgefäße transportiert werden kann. Es konnte ein Bypass-Fluss für ABA durch den gesamten Zellwandapoplasten, auch durch lipophile Barrieren wie Exo- und Endodermis nachgewiesen werden. Dies ist durch die speziellen Moleküleigenschaften von Abscisinsäure möglich: (i) der geringe Durchmesser des Moleküls (8 - 11 nm) und (ii) die hohe Lipophilie von ABA bei schwach sauren pH-Werte. Mit einer Penetration apoplastischer Barrieren ist demnach zu rechnen. Weiterhin wurde gezeigt, dass die Ausbildung solcher lipophilen Zellwandnetze einen signifikanten Einfluss auf den apoplastischen ABA-Transport besitzt. Die Ausbildung einer Exodermis in Mais, wie sie unter natürlichen Bedingungen zu beobachten ist, konnte den ABA-Fluss in das Xylem um die Faktoren 2 bis 4 reduzieren. Da gleichzeitig eine Verminderung der hydraulischen Wurzelleitfähigkeit um denselben Betrag auftrat, blieb das Wurzel-Spross-ABA-Signal, die Phytohormonkonzentration, im Xylem gleich. Die zu den Stomata geleitete Information über den Wasserzustand der Wurzel änderte sich also nicht. Im natürlichen System ist sogar eine Verstärkung des Signals zu erwarten, da eine Exodermis nicht als Aufnahme-Barriere für gewebeproduzierte ABA wirkt. Gleichzeitig verringert sie den Verlust von apoplastischer ABA an die Rhizosphäre. Außerdem wird der Wasserverlust aus dem Gewebe durch eine Exodermis signifikant reduziert wird. Somit sind solche Wurzeln gut an die Bedingungen eines eintrocknenden Bodens angepasst. Apoplastische Barrieren sind demnach, neben membran-lokalisierten Tranportern, wichtige Parameter für die Beurteilung von Wurzeltransporteigenschaften für Wasser und darin gelöste Substanzen. Der Beitrag der apoplastischen Komponente zum Gesamt-ABA-Transport ist abhängig von der untersuchten Pflanzenart, der aktuellen Transpirations- oder Wasserflussrate und von Umwelteinflüssen wie erhöhter ABA-Konzentration im Wurzelgewebe (z.B. durch Trockenstress), pH-Wert der Rhizosphäre und den Ernährungsbedingungen der Pflanze. Erhöhter radialer Wasserfluss, erhöhte ABA-Wurzelgewebegehalte und niedriger pH-Wert der Rhizosphäre verstärken den apoplastischen Bypass-Fluss unter physiologischen Bedingungen. Geringe Wassertransportraten, niedrige ABA-Konzentrationen im Gewebe, alkalische pH-Werte der Rhizosphäre und Ammoniumernährung verstärken dagegen den symplastischen Beitrag zum ABA-Transport. In der vorliegenden Arbeit konnten die sich widersprechenden Theorien bezüglich des ABA-Effektes auf die hydraulische Leitfähigkeit von Wurzeln erklärt werden. ABA erhöht über einen Zeitraum von 2 Stunden die Zellleitfähigkeit (Lp) mit einem Maximum 1 Stunde nach ABA-Inkubation. Dies wirkt sich in einem verstärktem Lpr von intakten Wurzelsystemen aus, das einem ähnlichen Zeitmuster folgt. Pflanzen sind demnach in der Lage, mittels ABA den zellulären Wassertransportweg reversibel zu optimieren, um so unter mildem Trockenstress, wie er in einem gerade eintrocknenden Boden auftritt, die Pflanze mit ausreichend Wasser zu versorgen. Tritt ein länger andauernder Wassermangel ein, versperrt die Pflanze diesen Weg wieder. Dieser transiente Effekt erklärt auch die aus der Literatur bekannten stimulierenden und inhibierenden ABA-Wirkungen. Durch den verstärkten Wasserfluss zu Beginn der Stresssituation erzeugt ABA auf diese Weise ein sich selbst verstärkendes, wurzelbürtiges Hormonsignal in den Spross. Das Blatt erreicht in effektiver Weise eine ABA-Menge, die ausreichend ist, um die Stomata zu schließen. Es folgt eine Reduktion der Transpiration. Eine weiter andauernde Erhöhung des symplastischen Wassertransportweges wäre ohne physiologische Bedeutung. Regulierende Membranstrukturen für diesen Vorgang könnten ABA-sensitive Wasserkanäle (Aquaporine) der Plasmamembran sein. Es wurde gezeigt, dass der Rezeptor für diesen Vorgang innerhalb von corticalen Maiswurzelzellen lokalisiert und hochspezifisch für (+)-cis-trans-ABA ist. Die Signaltransduktion für diesen Kurzzeiteffekt erfolgt nicht mittels verstärkter Aquaporintranskription, könnte aber über ABA-induzierte Aktivierung (Phosphorylierung), oder Einbau von Aquaporinen in die Zellmembran ablaufen. Der Abscisinsäure-Transport ist ein komplexer Vorgang. Er wird beeinflusst durch Umwelteinflüsse, Wurzelanatomie, ist gekoppelt mit dem Wasserfluss und durch sich selbst variierbar. Herkömmliche Vorstellungen einer simplen Hormondiffusion können diesen regulierbaren Vorgang nicht mehr beschreiben. Pflanzen besitzen ein ABA-Transportsystem, das schnell, effektiv und an sich verändernde Umweltbedingungen adaptierbar ist. N2 - The experimental work of the presented study has been able to show, for the first time, that a phytohormone like ABA can be transported apoplastically into xylem vessels by solvent-drag of the water flow. For ABA, a bypass-flow throughout the whole cell wall apoplast, including lipophilic barriers like exo-and endodermis, could be demonstrated. This may be due to the particular properties of the 264 Da ABA-molecule: (i) the small diameter of the molecule (8 to 11 nm) and (ii) the high lipophily of the uncharged ABA under physiological conditions. Conclusively, a penetration of apoplastic barriers is supposed to be possible. Furthermore, this study shows the development of such lipophilic cell wall-nets should have significant influence on apoplastic ABA-transport-properties. The formation of an exodermis in maize, as it occurs under natural conditions, was able to reduce the ABA-flow into the xylem by factors of 2 up to 4. As, simultaneously, the root-hydraulic conductivity was decreased by the same rate, the root-to-shoot ABA-signal, the phytohormone concentration in the xylem, remained constant. The information about the root-water-status addressed to the guard cells has not changed, therefore. In the natural environment even an increase of this signal is to be expected, as exodermal layers are no uptake-barriers for the tissue-produced ABA. On the contrary, an exodermis will retard the leakage of ABA to the rhizosphere. At the same time, roots are more effectively adapted to drought because water loss from exodermal roots is also reduced significantly. Apoplastic barriers are, therefore, beside membrane-located transport-proteins, the important parameters for determining root-transport-properties for water and solutes. The contribution of the apoplastic component to the entire ABA-transport depends on the plant species investigated, the actual transpiration- or water-flow rate and on external conditions like high ABA-concentrations in the root tissue (e.g. after drought), pH of the rhizosphere, and the nutrient status of the plant. Increased radial water-flow, raised ABA-contents of the root tissue, and a low pH of the rhizosphere intensified the apoplastic bypass-flow under physiological conditions. Low water-transport rates, low ABA tissue-contents, alkaline pH-values in the rhizosphere and ammonium as the only N-source, on the other hand, increased the symplastic contribution to the ABA-transport. In the presented study, the controversal dispute concerning the ABA-effect on root hydraulic conductivity could be settled. ABA raises cell hydraulic conductivity (Lp) for 2 h with a maximum after 1 h of ABA-application. This results in an increased Lpr (hydraulic conductivity of intact root systems), directed by a similar time-pattern. So, by ABA plants are able to reversibly optimise the cellular transport path of water to support the plant under mild drought stress with sufficient water. However, if water deficiency continues, plants again close this additional symplastic pathway. This transient ABA-effect explains both stimulating and inhibiting ABA-actions, as known from literature. At the beginning of a stress situation ABA induces by an increased water flow a self-intensifying root-to-shoot-signal. Thus, in an effective way the leaf achieves a sufficient amount of ABA in order to close the stomata. A reduction in transpiration follows. Further continuous stimulation of the symplastic water transport path would be without any physiological meaning. Membrane structures, responsible for regulating this mechanism may be ABA-responsive water channels (aquaporins) in the plasma membrane. It has been shown that the receptor for regulating these channels is localised inside the cortical cells of maize roots and highly specific for (+)-cis-trans-ABA. Signal transduction for this short-time effect is not mediated by intensified aquaporin-transcription, but there may be evidence of ABA-induced regulation by channel activation (phosphorylation) or by incorporation of aquaporins into cell membranes. The transport of abscisic acid is a complex process modified by environmental conditions, root anatomy, coupled with the water flow, and variable by itself. Customary ideas about a simple hormone diffusion are not apt to describe this complex process anymore. Plants possess an ABA-transport system, which is fast, effective, and adaptable to changing environmental conditions. KW - Sonnenblume KW - Wurzel KW - Wassertransport KW - Abscisinsäure KW - Stofftransport KW - Mais KW - Abscisinsäure KW - ABA KW - Aquaporin KW - Exodermis KW - Hydraulische Leitfähigkeit KW - Wassertransport KW - Wurzel KW - Helianthus annuus KW - Zea mays KW - Abscisic acid KW - ABA KW - aquaporin KW - exodermis KW - hydraulic conductivity KW - water transport root KW - Helianthus annuus KW - Zea mays KW - Nicotiana tabacum Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1421 ER - TY - THES A1 - Sauter, Angela T1 - Die Bedeutung von ABA-Konjugaten als hormonelles Langstreckensignal in Pflanzen T1 - The implication of ABA-conjugates for long distance signalling in plants N2 - Abscisinsäure-Glucoseester (ABA-GE) kann nach der vorliegenden Untersuchung nicht mehr ausschließlich als Endmetabolit der Abscisinsäure (ABA) gelten. Der unter Stressbedingungen im Xylem verstärkt transportierte ABA-GE trägt in Kombination mit einer extrazellulären ß-D-Glucosidaseaktivität im Blattapoplast zu einer Stabilisierung und Intensivierung des ABA-Langstreckensignals bei. N2 - The results presented in this study support te idea that abscisic acid glucose ester (ABA-GE) can not be considered exclusively as a final metabolite of ABA. While stress conditions intensify the ABA-GE-concentration in the xylem, and the existance of ß-D-glucosidase activity in the leaf apoplast suggest that ABA-GE stabilises and intensifies the ABA long-distance signal. KW - Abscisinsäure KW - Wurzel KW - Spross KW - Signaltransduktion KW - ABA-Konjugate KW - ABA-GE KW - Wurzel-Spross-Stresssignal KW - Xylem KW - ß-D-Glucosidase KW - ABA-conjugates KW - ABA-GE KW - root-to-shoot stress signal KW - xylem KW - ß-D-glucosidase Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3892 ER - TY - THES A1 - Schraut, Daniela T1 - Auswirkungen von externen Stressbedingungen auf die radialen Wasser- und ABA-Flüsse und den endogenen ABA-Gehalt des Wurzelgewebes von Maiskeimlingen (Zea mays L.) T1 - Consequences of external stress conditions for the radial ABA- and water-flows and for the endogenous ABA content in root tissues of maize seedlings (Zea mays L.) N2 - Das Ziel der vorliegenden Arbeit war es den Zusammenhang zwischen dem endogenen und internen ABA-Gehalt des Wurzelgewebes und dem radialen ABA- und Wasserfluss zu untersuchen und zu überprüfen ob diese Faktoren durch unterschiedliche Nährstoffbedingungen beeinflusst werden. Der radiale Transportweg von ABA wurde ebenfalls untersucht. • In dieser Arbeit konnte das erste Mal gezeigt werden, dass ein direkter Zusammenhang zwischen dem endogenen und internen ABA-Gehalt des Wurzelgewebes und dem radialen Wasser- und ABA-Transport besteht. Unter vergleichbaren Bedingungen können aus einem gegebenen ABA-Gehalt Rückschlüsse auf die radialen Wasser- und ABA-Flüsse gezogen werden. • Während Kalium- und Calciummangel und die Kultur in CaSO4 den radialen Wasserfluss von Maiskeimlingen stimulierten, war Jv unter Nitratmangel reduziert. Phosphat- und Sulfatmangel wirkten sich nicht auf den Wasserhaushalt von Maiskeimlingen aus, trotz einem deutlich reduzierten P- bzw. S-Gehalt konnten keine klaren Defizienzsymptome festgestellt werden. • Der endogene ABA-Gehalt im Wurzelgewebe von Maiskeimlingen war nur unter Kalium- und Nitratmangel erhöht. • Der radiale ABA-Transport wurde unter Kalium-, Nitrat-, Calciummangel und in CaSO4-Kultur gesteigert. Der erhöhte ABA-Fluss in Kaliumdefizienten Keimlingen resultiert aus einer gesteigerten ABA-Biosynthese und dem erhöhten Wassertransport. Unter Nitratmangelbedingungen lässt sich der gesteigerte ABA-Fluss anhand des erhöhten ABA-Gehaltes im Wurzelgewebe erklären. Die erhöhte ABA-Konzentration im Xylemsaft von Keimlingen aus Calciummangel- und CaSO4-Kultur ist das Ergebnis des gesteigerten Wassertransportes. Phosphat- und Sulfatmangel hatten keine Auswirkungen auf den ABA-Fluss. • Salzstress (50 mM) reduzierte den radialen Wasserfluss deutlich. Der erhöhte endogene ABA-Gehalt im Wurzelgewebe hatte keinen Einfluss auf Jv und JABA. Die Auswirkungen von Salzstress waren voll reversibel. • 100 nM externe ABA wirkte sich unter allen untersuchten Nährstoffbedingungen gleichermaßen stimulierend auf Jv und JABA aus. In NaCl-gestressten Keimlingen zeigte externe ABA keinen Effekt. • Eine Möglichkeit zur Immunolokalisation von ABA in Wurzelquerschnitten von Maiskeimlingen wurde entwickelt und optimiert. • Die Visualisierung des radialen ABA-Transportes anhand der Immunolokalisation mit monoclonalen Antikörpern zeigte, dass Endo- und Exodermis eine apoplastische Barriere für den ABA-Transport darstellen. Die Ergebnisse lassen den Rückschluss zu, dass die Exodermis die wirksamere Barriere für den ABA-Transport ist. • Wurzeln von Maiskeimlingen bildeten unter Nitratmangelbedingungen eine Exodermis aus und verstärkten die Suberinisierung der Endodermis. Unter Kaliummangel konnten keine verstärkten Barriereeigenschaften beobachtet werden. In der vorliegenden Arbeit konnte zum ersten Mal aufgezeigt werden, dass eine signifikant hohe Korrelation zwischen dem endogenen ABA-Gehalt des Wurzelgewebes und dem ABA- bzw. Wassertransport besteht. Die ebenfalls positiv signifikant hohe Korrelation zwischen dem radialen Wasser- und ABA-Transport zeigt einen apoplastischen ABA-Transport an. Mit zunehmendem Wasserfluss steigt auch die ABA-Konzentration im Xylem. Ein apoplastischer radialer bypass der ABA konnte auch mit Hilfe der Immunolokalisation nachgewiesen werden. N2 - The objective of this study has been to investigate the relations between the endogenous and internal ABA content in root tissues and the radial ABA- and water-flows and how these individual factors can be affected by different conditions of nutrient deficiency. The radial transport paths also have been studied. • The experiments of this study, for the first time, show a direct correlation between endogenous and internal ABA content in root tissue and radial water- and ABA-transport. From differences of the endogenous ABA content, conclusions can be drawn about changes of the radial water- and ABA-flows under comparable transpiring conditions. • Whereas potassium and calcium deficiencies and CaSO4-culture are stimulating the radial water flow of maize seedlings, nitrate-deficiency will reduce Jv. Phosphorus and sulphur deficiencies do not have an effect on the water balance of maize seedlings because, despite clearly reduced internal P- and S-content no serious deficiency symptoms developed. • The endogenous ABA-content of maize root tissues is enhanced by potassium and nitrate deficiencies only. • Radial ABA-transport is enhanced by potassium, nitrate, calcium deficiencies and in CaSO4-culture. The increased ABA-flow in potassium deficient seedlings is a result of the enhanced ABA-biosynthesis and the increased water-transport. Under conditions of nitrate deficiency the enhanced ABA-content in root tissue results in an increased ABA-flow. In maize seedlings cultivated under calcium deficiency or in CaSO4 the enhanced ABA-concentration of xylem sap is a result of the stimulated water-flow. No effect can be seen under phosphate and sulphate deficiencies. • Salt stress (50 mM) reduces the radial water flow drastically. Although endogenous ABA is accumulated under salt stress Jv remains unaffected. The salt effect is fully reversible. • Under all nutrient deficient and hypoxic conditions, 100 nM external ABA stimulates water and ABA-flows in a comparable way. In NaCl-stressed seedlings external ABA proved to be ineffective. • A technique of immunolocalisation of ABA in cross sections of maize roots has been developed and optimised. • Visualisation of the radial ABA-transport by immunolocalisation with monoclonal antibodies demonstrated the barrier properties of endodermis and exodermis for radial ABA-transport. From the results of immunolocalisation it is concluded that the exodermis only is a significant barrier for radial ABA transport. • Roots of maize seedling build up an exodermis and enhance the suberinisation of the endodermis under nitrogen deficiency, whereas under potassium deficiency no increased barrier properties could be observed. The presented work, for the first time, shows the tight and significant correlation between the endogenous and internal ABA-content of root tissue and the radial ABA- respectively water-transport. Likewise, there is a positive highly significant correlation between the radial water- and ABA-transport, indicating an apoplastic bypass of ABA. With increasing water flow, the ABA-concentration in xylem-sap is increasing as well. A radial apoplastic ABA-flow could also be demonstrated by immunolocalisation. KW - Mais KW - Keimling KW - Abscisinsäure KW - Wasser KW - Nährstoffmangel KW - Abscisinsäure KW - Wasserfluss KW - Nährstoffmangel KW - Salz KW - Immunolokalisation KW - Suberin KW - Abscisic acid KW - water flow KW - nutrient deficiency KW - salt KW - immunolocalisation KW - suberin Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13163 ER - TY - THES A1 - Marten, Holger T1 - Rolle und Regulation von Anionenkanälen während der Stomabewegung als Reaktion auf Licht, CO2 und Wasserstress T1 - Role and regulation of anion channels during stomatal movements in response to light, CO2 and water stress N2 - Die Stomata in der Epidermis von Pflanzen sind Poren, die den Gasaustausch mit der Atmosphäre regulieren. Die Öffnungsweite der Stomata kann verändert werden, was eine Optimierung der CO2 Aufnahme für die Photosynthese ermöglicht und gleichzeitig den Wasserverlust durch Transpiration minimiert. Um diese Funktion zu erfüllen, können Stomata verschiedene Stimuli wie Wasserstress (durch Abscisinsäure), Licht und CO2 wahrnehmen. Die oben genannten Reize führen dann zu einer Aufnahme oder Abgabe von osmotisch aktiven Substanzen in zwei Schließzellen, welche die Stomaöffnung kontrollieren. Die Rezeptoren zur Wahrnehmung dieser Stimuli, die intrazellulären Signalwege und die beteiligten Ionentransportproteine in den Schließzellen sind nur lückenhaft bekannt. In dieser Arbeit lag ein Hauptaugenmerk auf der Rolle von Anionenkanälen der Plasmamembran bei Stomabewegungen, sowie auf den Signalwegen welche diese Kanäle steuern. Die Aktivität der Anionenkanäle wurde mit der DEVC (Double Electrode Voltage Clamp) Einstich-Methode in Schließzellen in der intakten Pflanze gemessen, kombiniert mit Calcium Imaging durch den Ca2+ Indikator Farbstoff FURA2. Stomaschlussreaktionen werden durch Abscisinsäure (ABA), CO2 und Dunkelheit induziert und bei allen drei Stimuli konnten wir in Nicotiana tabacum eine Aktivierung von Anionenkanälen beobachten. Das führt zu Anionenefflux aus den Schließzellen und einer Depolarisation der Plasmamembran, was wiederum Kalium-Efflux-Kanäle spannungsabhängig aktiviert. Der resultierende Verlust osmotisch aktiver Teilchen führt dann zu Turgorabnahme der Schließzellen und Stomaschluss. Das zeitliche Muster der Anionenkanalaktivität bei dem Stomaschluss, ausgelöst durch CO2, Dunkelheit und ABA war bei allen Reizen ähnlich. Es zeigte sich eine charakteristische transiente starke und darauf folgende schwächere Anionenkanalaktivität. Dieses konservierte Muster lässt Überschneidungen bei der Signaltransduktion der verschiedenen Stimuli vermuten. Die gesteigerte Aktivität der Anionenkanäle während der Reaktion auf ABA und Dunkelheit wurde in ungefähr der Hälfte der Antworten von einem Anstieg der zytosolischen Ca2+ Konzentration begleitet. Bei beiden Stimuli scheinen somit Ca2+ abhängig und unabhängig Signale intrazellulär weitergeleitet zu werden. Allerdings war der Effekt der Ca2+ Signale auf die Aktivität der Anionenkanäle bei den beiden Stimuli unterschiedlich. Eine zytosolisch erhöhte Ca2+ Konzentration konnte bei Antworten auf ABA nicht mit einer erhöhten Anionenkanalaktivität in Verbindung gebracht werden, bei Dunkelheit hingegen wurde die Aktivität der Anionenkanäle in Anwesenheit von Ca2+ gesteigert. Die wichtige Rolle von Anionenkanälen beim Stomaschluss lässt vermuten, dass ihre Deaktivierung eine Vorraussetzung für eine Stomaöffnung ist. Blaulicht führt bei niedrigen Photonen-Fluss Raten zu Stomaöffnung und sollte daher Anionenkanäle inhibieren. Übereinstimmend damit konnten wir tatsächlich zeigen, dass Blaulicht in Schließzellen von Vicia faba und Arabidopsis thaliana Anionenkanäle deaktiviert. Diese Deaktivierung ist von den Phototropin-Blaulichtrezeptoren abhängig, da die Deaktivierung der Anionenkanäle in Arabidopsis thaliana phot1/phot2 Doppelmutanten nicht beobachtet werden konnte. Neben einer Blaulicht spezifischen Antwort öffnen Stomata auch in Antwort auf photosynthetisch aktive Strahlung (PAR). Die PAR Wahrnehmung scheint zu einem wesentlichen Teil über Veränderungen der interzellulären CO2 Konzentration, ausgelöst durch die Photosyntheseaktivität des Mesophylls, stattzufinden (Roelfsema et al., 2002). In Übereinstimmung mit dieser Hypothese konnten wir in Schließzellen in Albino Blattarealen von Chlorophytum comosum und gebleichten Vicia faba keine Reaktion auf PAR beobachten, obwohl Schließzellen von Chlorophytum comosum in Albino Bereichen funktionierende Chloroplasten besitzen. Die Rolle von CO2 bei der PAR Antwort haben wir des Weiteren in NtMPK4 antisense Pflanzen untersucht. Stomata von NtMPK4 antisense Pflanzen haben nicht auf Änderungen in der atmosphärischen CO2 Konzentration reagiert und zeigten eine stark reduzierte Antwort auf PAR. Diese Ergebnisse bestätigen die wichtige Rolle der intrazellulären CO2 Konzentration bei der PAR Antwort, sie zeigen aber auch, dass es anscheinend zusätzlich zu CO2 noch ein weiteres PAR abhängiges Signal für Stomaöffnung gibt. N2 - Stomata in the epidermis of plants are pores, which regulate the gas exchange with the atmosphere. The aperture of these stomata can be altered and thus enable the plant to optimize the uptake of CO2 for photosynthesis, while minimizing loss of water via transpiration. To fulfil this function, stomata are able to sense several stimuli like water stress (through abscisic acid), light and CO2. The mentioned stimuli can induce accumulation in or release of osmotically active substances from two guard cells that control the stomatal aperture. The receptors for perception of these stimuli, the intracellular signal transduction pathways and the involved ion transporters of the guard cells are only partially resolved. This work focuses on the role of plasma membrane anion channels during stomatal movements and the signal transduction pathways that controls these channels. The activity of the anion channels was studied with the DEVC (double electrode voltage clamp) impalement method, in combination with FURA2 based calcium imaging in guard cells located in intact plants. Closure of stomata is induced by abscisic acid (ABA), CO2 and darkness and all these stimuli were found to activate anion channels in Nicotiana tabacum. This response not only leads to an anion efflux from the guard cells, but also causes depolarization of the plasma membrane, which in turn activates voltage dependent potassium efflux channels. As a result, osmotically active particles are lost, causing a decrease of the guard cell turgor and stomatal closure. The timing of anion channel activation in response to CO2, darkness and ABA displayed a similar pattern for all three stimuli. It was characterized by a transient strong-, followed by a steady low activity of anion channels. This conserved pattern suggests conserved steps in the signal transduction pathways of these stimuli. The activation of anion channels in response to ABA and darkness was in approximately half of the responses accompanied by an increase in the cytosolic Ca2+ concentration. This suggests that ABA and darkness are transmitted through Ca2+-dependent as well as Ca2+-independent signalling pathways. However, the effect of Ca2+ signals on the degree on anion channel activity differed for both stimuli. During ABA responses, an increase in the cytosolic Ca2+ concentration could not be linked to enhanced anion channel activity, but Ca2+ signals were related to large anion currents in responses to darkness. The important role of anion channels for inducing stomatal closure suggests that their deactivation is a prerequisite for stomatal opening. Blue light provokes stomatal opening, at low photon flux densities, and thus should inhibit anion channels in guard cells. We were able to show that blue light indeed deactivates anion channels in Vicia faba and Arabidopsis thaliana. This response depends on phototropin blue light receptors, because it was not observed in Arabidopsis thaliana phot1/phot2 double mutants. In addition to a blue light-specific response, stomata open in response to photosynthetically active radiation (PAR). The perception of PAR seems to depend mainly on a decrease of the intercellular CO2 concentration, which is caused by photosynthetic activity of the mesophyll (Roelfsema et al., 2002). In agree with this proposed mechanism, we observed no response to PAR in guard cells located in albino leaf areas of Chlorophytum comosum and bleached Vicia faba, even though guard cells of Chlorophytum comosum in albino areas contain functional chloroplasts. We further studied the role of CO2 in the PAR response with NtMPK4 antisense plants. Stomata of NtMPK4 silenced plants did not respond to changes in the atmospheric CO2 concentration and showed a strongly reduced response to PAR. These data thus confirms the important role of intracellular CO2 in the PAR response, but also point to an additional PAR dependent signal for stomatal opening. KW - Elektrophysiologie KW - Ionenkanal KW - Abscisinsäure KW - Phototropine KW - Schließzellen KW - CO2 Reaktion KW - Phototropins KW - Guard Cells KW - CO2 Response KW - Abscisic Acid Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29349 ER - TY - THES A1 - Konrad, Kai Robert T1 - Untersuchung zu den frühen ABA-induzierten elektrischen Reaktionen in Schließzellen von Vicia faba T1 - Investigation of the early ABA-induced electric responses of Vicia faba guard cells N2 - Im Rahmen der vorliegenden Arbeit wurde die Perzeption und frühe Signaltransduktion des Phytohormons ABA in Schließzellprotoplasten von Vicia faba mittels der Patch-Clamp-Technik untersucht. Es wurde entdeckt, dass der ABA-Signaltransduktionskette zur Aktivierung von Plasmamembran-ständigen Anionenkanälen voraussichtlich eine Proteinkinase beinhaltet und durch eine cytosolische ABA-Perzeption ausgelöst wird. Die durch ABA-bewirkte Anionenkanal-Aktivierung verursacht in Schließzellen eine Plasmamembran-Depolarisation. Basierend auf der ABA-induzierten Schließzellen-Depolarisation wurde zudem eine Methode etabliert, um mit dem Spannungs-sensitiven Farbstoff DiBAC4(3) in Populationen von intakten Vicia faba-Schließzellprotoplasten Membranpotential-Änderungen zu quantifizieren. N2 - Within the framework of this dissertation the perception and early signal transduction chain of the phytohormon ABA was investigated with the Patch-Clamp-technique in Vicia faba guard cell protoplasts. It was discovered that the ABA-signalling chain to activate plasma-membrane anion channels likely implied a protein kinase and was triggered through a cytosolic ABA-perception. The ABA-induced anion channel activation leads to plasma membrane depolarization. Based on the ABA-evoked depolarization response a method was developed to monitor and quantify membrane potential changes in populations of Vicia faba guard cell protoplasts with the voltage-sensitive dye DiBAC4(3). KW - Schließzelle KW - Membranpotenzial KW - Anionentranslokator KW - Ackerbohne KW - Abscisinsäure KW - DiBAC4(3) KW - guard cell KW - anion channel KW - membrane potential KW - abscisic acid KW - DiBAC4(3) Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27216 ER - TY - THES A1 - Levchenko, Victor T1 - Studies of CA 2+ -signaling and CL-conductance changes in response to abscisic acid, voltage changes and cold, in the plasma membrane of guard cells N2 - Land plants must control the transpiration water stream and balance it with carbon dioxide uptake for optimal photosynthesis. A highly specialized type of plant cell called guard cells have evolutionary appeared which are suited for this complicated purpose. Guard cells are located by pairs on aerated plant surface and form stomata – structural units, which represent highly regulated “watergate” (Roelfsema and Hedrich, 2005). Guard cells sense many environmental and internal plant-derived stimuli and by changing degree of their swelling tightly regulate diffusion of water vapor and other gases. Cell processes taking place in stomata during their movements had been a subject of intensive investigation for more than three decades (Schroeder et al., 2001; Assmann and Shimazaki, 1999). With use of electrophysiological technique the basic processes underlying stomatal movements were described (Thiel et al., 1992; Dietrich et. al., 2001; Roelfsema and Hedrich, 2005). Another set of questions arised between plant biologists is how the signals affecting stomatal aperture are transduced in guard cells starting from perception by receptor structures and ending on the osmodynamic motor components. Introduction of fluorescent microspectroscopy technique allowed to characterize some Ca2+ and H+-based signaling events, taking place in the cytoplasm during stomata function. Most of the processes, taking place in stomata were characterized in guard cell preparations, such as strips of isolated leaf epidermis or guard cell protoplasts, - cells with enzymaticaly digested cell walls. Some experimental observations although point that reactions of guard cells located in their natural environment, leaves of intact plants can differ from those could be registered in preparations. These deviations might be explained by the modulation of guard cell function by apoplastic factors originating from surrounding tissues like mesophyll or leaf epidermis (Roelfsema and Hedrich, 2002). On the other hand registration of physiological responses in prepared tissues may also contain possible artifacts, related to the preparation procedures. The aim of the experimental work presented here was to investigate the cell signaling events, taking place in guard cells upon plant stress hormone abscisic acid (ABA) and some other stimuli action. Abscisic acid is a compound that synthesized in plant roots upon drought and closes stomata in the leaf to prevent the plant organism from excessive water loss. Previous studies on guard cell of isolated epidermis and guard cell protoplasts showed, that ABA induces stomatal closure via activation of plasma membrane anion channels (Grabov et al., 1997; Pei et al, 1997). Anion channels are known to be activated by elevated 2 concentrations of cytoplasmic Ca2+ [Ca2+]cyt (Schroeder and Hagiwara, 1989; Hedrich et al., 1990). Application of Ca2+-sensitive fluorescent probes revealed [Ca2+]cyt increases in guard cells upon ABA action (McAinsh et al., 1990). This observation led to suggestion that [Ca2+]cyt directly participate in the transduction of ABA signal in guard cells. Although no direct evidences for co-occurrence of [Ca2+]cyt rises and following activation of anion channels upon ABA action was not presented until yet. Results of experimental work performed on intact Vicia faba, Commelina communis and Nicotiana plumbagnifolia plants showed that guard cells of intact plant leaves respond with transient activation of plasma membrane anion channels upon perception of ABA. Kinetics of the response is highly reproducible and seemed to be conserved between species. Although despite clear generation of anion current transients, no [Ca2+]cyt increases could be recorded with using fluorescent probe Fura-2 microinjected into the cytoplasm. Together with results of later study on intact Nicotiana tabacum guard cells, reported obligatory [Ca2+]cyt increases which were desynchronized with anion current transients (Marten et al., 2007b) this, may indicate that [Ca2+]cyt increases are not necessary component of ABA signal transduction pathway. Together with absence of the effect of cytoplasm-delivered Ca2+- mobilizing agents IP3, IP6 and NAADP on anion currents these data may suppose that role of [Ca2+]cyt in ABA signaling must be reassessed. Further interest represented characterization of [Ca2+]cyt signaling and homeostasis in intact guard cells comparing with those in prepared cells. Experiments revealed strong deviations in [Ca2+]cyt behavior between different measuring systems. While guard cells of intact plants were able to strictly maintain [Ca2+]cyt level upon experimental shifting of [Ca2+]cyt level in either direction of elevation or decrease, cells of isolated epidermis showed complete absence of such ability. Guard cell protoplasts showed even weaker [Ca2+]cyt regulation ability and were capable of low physiological [Ca2+]cyt levels maintaining only at depolarized membrane potentials. Apart to these differences, prepared guard cells showed also for-time less activation of anion currents by experimentally imposed [Ca2+]cyt increases. These data strongly suggest that registered in guard cell preparations [Ca2+]cyt signals may contain significant part of artifacts and must be carefully used for the building of models of guard cells signaling. Further experimental investigations are strongly required for understanding guard cell functioning, especially with relation of vacuoles participation. The experimental work was done by the author in the period from october 2001 until november 2004 under supervision of Professor Dr. Rainer Hedrich in laboratory of molecular plant physiology and biophysics at Julius-Maximillians University of Würzburg, Würz3 burg, Federal Republic of Germany. Scientific coordinator of the Ph. D. project is Dr. Max Robert Gustaaf Roelfsema, University of Würzburg. Most of experimental results, presented here (chapter III) are also published elsewhere (Roelfsema et al., 2004; Langer et al., 2004; Levchenko et al., 2005, 2008). Chapter I intend to shortly introduce the reader into the field of guard cell research and point out the current level of understanding regarding this branch of plant research. Special attention is given to description of guard cell ion channels, their function and regulation, including the mechanisms of Ca2+-, H+- and phosphorylation-based signaling. This section is preceded by a short history of guard cell research and explains the actuality of presented work. In chapter II experimental techniques, methods and data processing approaches, used in the presented work are described. Technique used for electrophysiological registrations on intact plant leaves were used before and described in more details by Roelfsema et al. (2001). Fluorescent microspectroscopy technique was for the first time applied to intact plant leaves in this work and described in more details including calibration of Fura-2 based measurements. Chapter III presents the major results of the experimental work. In chapter IV the experimental results are discussed and put into context with current knowledge of guard cell function knowledge. Finally, remarks on perspectives of guard cell signaling research are drawn. N2 - Landpflanzen sind in der Lage ihren Transpirationsfluss durch das Xylem zu regulieren und so den Wasserverlust mit dem Kohlendioxidbedarf der Photosynthese abzugleichen. Zu diesem Zweck haben sich im Laufe der Evolution Schließzellen entwickelt, welche in der Lage sind, diese komplizierte Aufgabe zu erfüllen. Schließzellen befinden sich auf Oberflächen oberirdischer Pflanzenorgane, wo sie als Paar eine Pore, dem sogenannten Stoma bilden. Schließzellen sind in der Lage mehrere Signale aus der Umwelt und von benachbarten Pflanzen wahrzunehmen. Anhand dieser Signale wird die Porenöffnung durch Änderungen des Schwellungsgrads der beiden Schließzellen genau reguliert. Die intrazellulären Prozesse die während der Stomabewegungen in den Schließzellen stattfinden sind bereits seit Jahrhunderten ein intensiv bearbeitetes Forschungsgebiet. Mit Hilfe elektrophysiologischer Techniken konnten bereits einige für die Stomabewegung grundlegende Prozesse beschrieben worden. Trotzdem sind immer noch viele Fragen offen. Dazu zählen vor allem die Mechanismen, die zur Wahrnehmung verschiedener Signale der Regulierung des osmotischen Motors in Schließzellen führt. Die meisten Studien zur Signalweiterleitung wurden mit isolierten Schließzellpräparationen durchgeführt, wie z.B. Epidermisstreifen oder Schließzellprotoplasten. Obwohl einige Schließzell-spezifische Eigenschaften in diesen Präparationen erhalten bleiben, deuteten kürzlich experimentelle Ergebnisse auf Unterschiede zwischen Antworten isolierter Schließzellen und denen intakter Pflanzen hin. Diese Unterschiede könnten durch die von Mesophyll- oder Epidermiszellen freigesetzte apoplastische Faktoren bedingt sein. Das Ziel der experimentellen Arbeiten dieser Dissertation war die Charakterisierung des Schließzellsignalweges ausgehend vom pflanzlichen Stresshormon Abscisinsäure (ABA). ABA wird in der Wurzel bei Trockenstress synthetisiert und bewirkt den Stomaschluss, um übermäßigen Wasserverlust zu unterbinden. Bisherige Studien mit isolierten Schließzellen ergaben, dass ABA die Aktivität der Plasmamembran-ständigen Anionenkanäle erhöht. In diesem Zusammenhang wurde postuliert, dass eine Aktivierung des ABAabhängigen Anionenkanals durch eine Erhöhung der zytosolischen Ca2+ Konzentration ([Ca2+]zyt) ausgelöst wird. Anionkanäle werden durch Ca2+ stimuliert und ABA bewirkt eine Erhöhung der [Ca2+]zyt. Die Resultate dieser Arbeit mit Vicia faba, Commelina communis und Nicotiana plumbagnifolia haben gezeigt, dass Schließzellen in intakten Blättern mit einer transienten Aktivierung der Plasmamembran-ständigen Anionenkanäle auf ABA reagieren. Die sehr typische 5 Aktivierungskinetik dieser ABA-Antwort scheint evolutionär gut konserviert zu sein. Obwohl ABA große Anionenströme in Vicia faba Schließzellen auslösen konnte, wurden keine Änderungen der [Ca2+]zyt mit dem Ca2+-Fluoreszenzindikator Fura-2 aufgezeichnet. Diese Resultate zeigen, dass zumindest in Vicia faba Schließzellen, eine Erhöhung der [Ca2+]zyt keine essentielle Komponente des ABA-Signalweges ist. Dieses Ergebnis zeigt, dass vor allem die Rolle der [Ca2+]zyt im ABA-Signalwege neu bewertet werden muss. Vor allem mit dem Unfähigkeit in Kombination mit den drei tierischen Ca2+-mobilisierenden Signalstoffen, IP3, IP6 and NAADP, die Anionenkanalaktivität zu beeinflussen. In einem weiteren Experiment, wurden Ca2+-abhängige Signalmechanismen und die Ca2+–Homöostase in Schließzellen zwischen isolierten Zellen mit denen in intakten Pflanzen verglichen. Schließzellen in intakten Pflanzen waren in der Lage, die [Ca2+]zyt unabhängig von Änderungen des Plasmamembranpotentials auf ein konstantes Niveau zu halten, während Schließzellen in isolierten Epidermisstreifen diese Fähigkeit verloren hatten. In Präparationen mit Epidermisstreifen löste eine Hyperpolarisierung des Membranpotentials einen dauerhaften Anstieg der [Ca2+]zyt aus. In Schließzellprotoplasten war das Vermögen, die [Ca2+]zyt zu regulieren, noch stärker eingeschränkt. Diese Zellen konnten nur bei depolarisierenden Membranpotentialen eine stabile [Ca2+]zyt halten. Darüber hinaus war auch das Vermögen von ABA, die Anionenkanalaktivität zu erhöhen bei Schließzellen in Epidermisstreifen stark begrenzt. Die in dieser Dissertation präsentierten Ergebnisse legen nahe, dass die bisher gemessenen [Ca2+]zyt-Signale an isolierten Schließzellen mit Fehlern behaftet sind. Die Isolierungsprozedur beeinflusst die Eigenschaften der Schließzellen und Daten aus solchen Präparationen sollten deswegen sorgfältiger bei der Entwicklung von Modellen zu Schließzellsignalwegen betrachtet werden. Einer Neubewertung der Rolle des [Ca2+]cyt wird voraussichtlich auf die Beteiligung neuartiger Komponenten des ABA Signalwegs hinweisen. Eine dieser Komponenten könnte die Vakuole der Schließzellen sein. „Tracer-Flux“ Experimente mit radioaktiven Isotopen und Patch-Clamp Studien an isolierten Vakuolen deuteten bereits auf eine wichtige Rolle der Vakuole bei der Regulierung der Schließzellbewegungen hin. Zukünftige Studien an intakten Schließzellen sind notwendig um diese Funktion in weiteren Details aufzuklären KW - Schließzelle KW - Abscisinsäure KW - Cytoplasma KW - Abscisic Acid KW - Guard Cell KW - Cytoplasmic Ca"+ KW - Vicia Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45309 ER - TY - THES A1 - Demir, Fatih T1 - Lipid rafts in Arabidopsis thaliana leaves T1 - Lipid Rafts in Arabidopsis thaliana Blättern N2 - Arabidopsis thaliana (A.th.) mesophyll cells play a pivotal role in the regulation of the drought stress response. The signaling & transport components involved in drought stress regulation within lipid rafts of the plasma membrane were investigated by DRM isolation from highly purified plasma membranes. Detergent treatment with Brij-98 and Triton X-100 resulted in a total of 246 DRM proteins which were identified by nano HPLC-MS/MS. The majority of these proteins could be isolated by Triton X-100 treatment (78.5 %) which remains the ”golden” standard for the isolation of DRMs. Comparing in-gel and in-solution digestion approaches disclosed additional protein identifications for each method but the in-gel approach clearly delivered the majority of the identified proteins (81.8 %). Functionally, a clear bias on signaling proteins was visible – almost 1/3 of the detected DRM proteins belonged to the group of kinases, phosphatases and other signaling proteins. Especially leucine-rich repeat receptor-like protein kinases and calcium-dependent protein kinases were present in Brij-98 & Triton X-100 DRMs, for instance the calcium-dependent protein kinase CPK21. Another prominent member of DRMs was the protein phosphatase 2C 56, ABI1, which is a key regulator of the ABA-mediated drought stress response in A.th. The lipid raft localization of the identified DRM proteins was confirmed by sterol-depletion with the chemical drug MCD. Proteins which depend upon a sterol-rich environment are depleted from DRMs by MCD application. Especially signaling proteins exhibited a strong sterol-dependency. They represented the vast majority (41.5 %) among the Triton X-100 DRM proteins which were no longer detected following MCD treatment. AtRem 1.2 & 1.3 could be shown to be sterol-dependent in mesophyll cells as well as two CPKs (CPK10 & CPK21) and the protein phosphatase ABI1. AtRem 1.2 & 1.3 could be proven to represent ideal plant lipid raft marker proteins due to their strong presence in Triton X-100 DRMs and dependency upon a sterol-rich environment. When fluorescence labeled AtRem 1.2 & 1.3 were transiently expressed in A.th. leaves, they localized to small, patchy structures at the plasma membrane. CPK21 was an intrinsic member of Triton X-100 DRMs and displayed extreme susceptibility to sterol-depletion by MCD in immunological and proteomic assays. Calcium-dependent protein kinases (CPKs) have already been studied to be involved in drought stress regulation, for instance at the regulation of S-type anion channels in guard cells. Hence, further transient expression studies with the anion channel SLAH3, protein kinase CPK21 and its counterpart, protein phosphatase ABI1 were performed in Nicotiana benthamiana. Transient co-expression of CPK21 and the anion channel SLAH3, a highly mesophyll- specific homologue of the guard cell anion channel SLAC1, resulted in a combined, sterol-dependent localization of both proteins in DRMs. Supplementary co-expression of the counterpart protein phosphatase ABI1 induced dislocation of SLAH3 from DRMs, probably by inactivation of the protein kinase CPK21. CPK21 is known to regulate the anion channel SLAH3 by phosphorylation. ABI1 dephosphorylates CPK21 thus leading to deactivation and dislocation of SLAH3 from DRMs. All this regulative events are taking place in DRMs of A.th. mesophyll cells. This study presents the first evidence for a lipid raft-resident protein complex combining signaling and transport functions in A.th. Future perspectives for lipid raft research might target investigations on the lipid raft localization of candidate DRM proteins under presence of abiotic and biotic stress factors. For instance, which alterations in the DRM protein composition are detectable upon exogenous application of the plant hormone ABA? Quantitative proteomics approaches will surely increase our knowledge of the post-transcriptional regulation of gene activity under drought stress conditions. N2 - Mesophyllzellen spielen eine sehr wichtige Rolle bei der Regulierung der Trockenstress-Antwort in der Pflanze Arabidopsis thaliana (A.th.). Um die an der Trockenstress-Antwort beteiligten Signaltransduktions- und Transportproteine zu identifizieren, die sich in Lipid Rafts der pflanzlichen Plasmamembran befinden, wurden Detergent-Resistant Membranes (DRMs) aus hochreinen Arabidopsis Plasmamembran-Präparationen isoliert. Behandlung dieser hochreinen Plasmamembran mit den Detergentien Brij-98 und Triton X-100 führte zur Identifikation von 246 DRM Proteinen, die mittels der nano HPLC-MS/MS Technologie detektiert wurden. Hierbei war festzustellen, dass das Detergens Triton X-100 eindeutig den Standard für die Isolierung von DRMs darstellt. Die große Mehrheit (78,5 %) der identifizierten DRM Proteine konnte nämlich mit Triton X-100 aufgereinigt werden. Vergleichende Anwendung verschiedener Verdaumethoden (In-Gel & In-Lösung Verdau) zeigte auf, dass jede Methode einen unterschiedlichen Pool an Proteinen identifiziert. Das Gros der analysierten Proteine (81,8 %) konnte jedoch auch alleine durch In-Gel Verdau ermittelt werden. Unter den identifizierten DRM Proteinen stellten Proteine, die an der Signaltransduktion beteiligt sind, fast 1/3 dar. Diese Proteingruppe wurde hauptsächlich durch Kinasen und Phosphatasen vertreten. Insbesondere Leucin-reiche rezeptor-artige and Calcium-abhängige Proteinkinasen waren in Brij-98 & Triton X-100 DRMs zu beobachten, z.B. die Calcium-abhängige Proteinkinase CPK21. Ebenso in Triton X-100 DRMs wurde die Proteinphosphatase 2C 56 (ABI1) lokalisiert, die eine zentrale Rolle bei der ABA-vermittelten Antwort auf Trockenstress in A.th. inne hat. Zur Bestätigung der Lipid Raft Lokalisation der identifizierten DRM Proteine wurden Sterole aus der Plasmamembran mittels der Chemikalie Methyl-ß-D-cyclodextrin entfernt. Besonders Proteine, die an der Signalweiterleitung beteiligt sind, zeigten eine starke Abhängigkeit von der Präsenz der Sterole. Sie waren besonders betroffen: 41,5 % der Proteine, die nach MCD Behandlung nicht mehr in DRMs identifiziert wurden, gehörten zur Gruppe der Signaltransduktionsproteine. Beispiele waren sowohl die Calcium-abhängigen Proteinkinasen CPK10 & CPK21, als auch die Proteinphosphatase ABI1. Die A.th. Remorine AtRem 1.2 & 1.3 stellen ideale Kandidaten für pflanzliche Lipid Raft Markerproteine dar, da beide sowohl ziemlich stark in Triton X-100 DRMs vertreten, als auch im besonderen Maße auf die Präsenz von Sterolen in DRMs angewiesen sind. Fluoreszenzmarkierte AtRem 1.2 & 1.3 Fusionskonstrukte lokalisierten bei transienter Expression in A.th. Blättern in kleinen, punktförmigen Strukturen an der Plasmamembran. Diese Strukturen zeigten frappierende Ähnlichkeit zu bereits bekannten Mustern von Lipid Raft Proteinen in Hefen und Säugetieren. CPK21 stellte ein besonderes Mitglied der Triton X-100 DRMs dar, welches ebenfalls stark auf die Präsenz von Sterolen in DRMs angewiesen war. Dies konnte durch immunologische and massenspektrometrische Experimente nachgewiesen werden. Calcium-abhängige Proteinkinasen (CPKs) sind an der Regulierung der Trockenstress-Antwort in Pflanzen beteiligt, z.B. bei der Aktivierung von S-typ Anionenkanälen in Schließzellen von A.th. Aufgrund dieser Beteiligung an der Trockenstress-Antwort, wurden transiente Co-Expressionsstudien des Anionenkanals SLAH3, der Proteinkinase CPK21 und ihrem Gegenspieler, der Proteinphosphatase ABI1 in Nicotiana benthamiana Blättern durchgeführt. Transiente Co-Expression von CPK21 und SLAH3, einem zum schließzell-spezifischen Anionenkanal SLAC1 homologen Protein in Mesophyllzellen, resultierte in einer sterol-abhängigen Co-Lokalisation beider Proteine in DRMs. Zusätzliche Gabe vom Gegenspieler ABI1 führte zum Verschwinden von SLAH3 aus DRMs, was möglicherweise auf die Inaktivierung der Proteinkinase CPK21 durch ABI1 zurückzuführen ist. Für CPK21 konnte schon aufgezeigt werden, dass es den Anionenkanal SLAH3 durch Phosphorylierung aktiviert. ABI1 hingegen dephosphoryliert die Proteinkinase CPK21 und führt zur Deaktivierung vom Anionenkanal SLAH3, welcher dann auch nicht mehr in DRMs lokalisierbar ist. Diese streng regulierten Prozesse im Rahmen der Trockenstress-Antwort spielen sich in DRMs von A.th. Mesophyllzellen ab. Die vorliegende Arbeit ist der erste Bericht eines Lipid Raft-lokalisierten Proteinkomplexes, der Signalweiterleitung und Transportprozesse in Arabidopsis Lipid Rafts vereint. Zukünftige Lipid Raft Studien könnten sich mit der Lokalisation von putativen DRM Proteinen nach Anwendung von abiotischen und biotischen Stressfaktoren befassen. So könnte man sich die Frage stellen, inwiefern sich die Proteinzusammensetzung in DRMs von der Zugabe des pflanzlichen Hormons Abscisinsäure (ABA) beeinflussen läßt. Insbesondere quantitative Proteomstudien werden in Zukunft mit Sicherheit unser Wissen über die posttranskriptionelle Regulation der Genaktivität bei Trockenstress erweitern. KW - Ackerschmalwand KW - Abscisinsäure KW - Plasmamembran KW - Stressreaktion KW - Mesophyll KW - ABA KW - DRMs KW - Membrandomänen KW - Trockenstress KW - Anionenkanal KW - Biomembran KW - Blatt KW - Membran KW - ABA KW - DRMs KW - Membrane domains KW - Drought stress KW - Anion channel Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53223 ER - TY - THES A1 - Stange, Annette T1 - Beziehung zwischen Ca2+-Homöostase und Aktivität der S-Typ Anionenkanäle in Schließzellen T1 - Relation of Ca2+-homeostasis and activity of S-type anion channels in guard cells N2 - Pflanzen regulieren ihren Gasaustausch mit der Atmosphäre, indem sie die Öffnungsweite von Poren in der Epidermis von Blättern, sog. Stomata, verändern. Bei Wassermangel werden die stomatären Poren geschlossen, um den Verlust von Wasser zu minimieren. Dieser Vorgang wird durch das Phytohormon ABA ausgelöst, welches eine Aktivierung von Anionenkanälen in der Plasmamembran der Schließzellen induziert. Obwohl die Aktivierung der Anionenkanäle ein zentrales Element in der ABA-Antwort darstellt, ist der Signalweg, der zu der Aktivierung der Anionenkanäle führt, nur lückenhaft verstanden. Im Rahmen dieser Arbeit wurde die Rolle von Signalintermediaten wie Proteinkinasen, -phosphatasen, Lipid-abgeleiteten Botenstoffen und Ca2+ bei der Aktivierung der Anionenkanäle untersucht. Hinsichtlich Ca2+ lag ein spezieller Fokus auf der Generierung von Ca2+-Signalen und auf der Frage, inwieweit ein Anstieg in der cytosolischen freien Ca2+-Konzentration für eine Aktivierung der Anionenkanäle ausreicht. Für diese Studien wurde hauptsächlich die Zwei-Elektroden-Spannungsklemm- (DEVC) Technik in Kombination mit Ca2+-Konzentrationsmessungen durch den Ca2+-sensitiven Farbstoff FURA-2 angewendet. Die Möglichkeit Anionenkanäle durch Ca2+ zu aktivieren wurde getestet, indem Ca2+-Signale in intakten Schließzellen von Nicotiana tabacum durch hyper- und depolarisierte Spannungen ausgelöst wurden und gleichzeitig die Ströme, die über die Plasmamembran flossen, gemessen wurden. Dabei führte eine Hyperpolarisation zu einer transienten Erhöhung der cytosolischen freien Ca2+-Konzentration während des Spannungssprunges, wohingegen eine Depolarisation zunächst eine Erniedrigung der cytosolischen freien Ca2+-Konzentration auslöste und das Ca2+-Signal bei Repolarisation der Plasmamembran auftrat. Dies weist darauf hin, dass in beiden Fällen hyperpolarisations-aktivierte Ca2+-Kanäle beteiligt sind, wobei das Schwellenpotential der Schließzellen, bei dem ein Ca2+-Signal ausgelöst wird, nach einer langen Depolarisation zu positiveren Spannungen verschoben ist. Die Modulation der Spannungssensitivität der Schließzellen während einer langen Depolarisation findet möglicherweise durch eine Aktivierung der Ca2+-Kanäle und/oder eine Inhibierung verschiedener Ca2+-Transportproteine durch eine niedrige cytosolische freie Ca2+-Konzentration statt. Der durch Hyperpolarisation bzw. durch lange Depolarisation induzierte transiente Anstieg in der cytosolischen freien Ca2+-Konzentration korrelierte mit einer transienten Aktivierung von S-Typ Anionenkanälen. Die Analyse der Ca2+-Konzentrations- und Zeitabhängigkeit ergab, dass die S-Typ Anionenkanäle durch Ca2+ in einem schnellen Signalweg mit einer halbmaximalen cytosolischen freien Ca2+-Konzentration von 515 nM (SE=235, n=33) aktiviert werden. Der durchschnittliche maximale S-Typ Anionenstrom lag bei -349 pA (SE=107, n=33) bei einer Spannung von -100 mV. Die Wirkung von Ca2+ auf Transportvorgänge über die Plasmamembran wurde auch in Drüsenzellen von Dionaea muscipula untersucht. In diesem Zelltyp induzierte eine mechanische Stimulierung der Triggerhaare ein Ca2+-Signal, wobei mehr als zwei Aktionspotentiale nötig waren, um einen transienten Ca2+-Anstieg auszulösen. Diese Daten zeigen, dass die Depolarisationsphase des Aktionspotentials in den Drüsen nicht direkt mit Ca2+-Flüssen assoziiert ist. Anstelle einer Ca2+-abhängigen Aktivierung scheinen Anionenkanäle in Drüsen von Dionaea muscipula also in einem Ca2+-unabhängigen Signalweg aktiviert zu werden. Diesen Aktivierungsmechanismus gibt es auch im ABA-Signalweg in Schließzellen. Dort findet eine Ca2+-unabhängige Aktivierung der S-Typ Anionenkanäle durch Proteinkinasen wie OST1 und CPK23 statt, wobei die Proteinphosphatase ABI1 als negativer Regulator diskutiert wird. In dieser Arbeit konnte die Redundanz von OST1 und CPK23 sowie Komponenten des Ca2+-abhängigen Weges in DEVC-Experimenten mit ost1-2- und cpk23-Mutanten von Arabidopsis thaliana beobachtet werden, die beide S-Typ Anionenkanalaktivität zeigten. Die Aktivität von S-Typ Anionenkanälen in Arabidopsis thaliana Mutanten, denen der S-Typ Anionenkanal SLAC1 fehlt, deutet außerdem an, dass redundante S-Typ Anionenkanäle vorhanden sind, die auch durch andere Proteinkinasen aktiviert werden könnten. ABA-induzierte S-Typ Anionenströme waren auch in abi1-Transformanten von Nicotiana tabacum messbar, wobei eine geringere Sensitivität gegenüber ABA als im Wildtyp auftrat, was auf eine unvollständige Inhibierung des ABA-Signalweges hindeutet. Die Redundanz der Intermediate im ABA-Signalweg war auch in Studien mit dem Lipid-abgeleiteten Botenstoff Phosphatidsäure sichtbar, der nur einen langsamen und unvollständigen Stomaschluss induzierte, was allerdings auch auf eine untergeordnete Rolle von Phosphatidsäure im ABA-Signalweg hinweisen könnte. N2 - Plants regulate gas exchange with the atmosphere by changing the aperture of pores in the epidermis of leaves, which are called stomata. Upon water deficiency, stomatal pores close to minimize water loss. This process is initiated by the phytohormone ABA, which induces activation of anion channels in the plasma membrane of guard cells. Even though activation of anion channels is a central element in the response to ABA, the signalling pathway, leading to the activation of anion channels, is still not understood. This work focuses on the role of signalling intermediates like protein kinases, protein phosphatases, lipid-based messengers and Ca2+ in the activation of anion channels. With regard to Ca2+, the generation of Ca2+-signals and the extent to which a rise in the cytosolic free Ca2+-concentration is sufficient for the activation of anion channels was studied. For this purpose, especially the double electrode voltage clamp (DEVC) technique was used in combination with FURA-2 based Ca2+-imaging. The ability of Ca2+ to activate anion channels was tested by evoking Ca2+-signals in guard cells of intact Nicotiana tabacum plants by either clamping the plasma membrane to hyperpolarized or depolarized voltages and simultaneously measuring plasma membrane currents. Thereby a transient elevation of the cytosolic free Ca2+-concentration directly followed the hyperpolarization, whereas depolarization initially induced lowering of the cytosolic free Ca2+-concentration, followed by a transient Ca2+-increase after returning to the holding potential. This suggests that hyperpolarization-activated Ca2+-channels are involved in both Ca2+-responses and that the threshold potential of the guard cell at which a Ca2+-signal is generated shifts to more positive values after a prolonged depolarization. Modulation of the voltage sensitivity of the guard cell during a prolonged depolarization might be due to activation of Ca2+-channels and/or inhibition of Ca2+-transport proteins by a low cytosolic free Ca2+-concentration. The transient elevation of the cytosolic free Ca2+-concentration, induced by hyperpolarization or prolonged depolarization, correlated with a transient activation of S-type anion channels. Analysis of the Ca2+-concentration and time dependence showed that S-type anion channels are activated by Ca2+ in a fast signalling pathway with a half maximal cytosolic free Ca2+-concentration of 515 nM (SE=235, n=33). The mean saturated S-type anion current was -349 pA (SE=107, n=33) at -100 mV. The effect of Ca2+ on plasma membrane transport processes was also studied in gland cells of Dionaea muscipula. In this cell type, a mechanical stimulation of trigger hairs induced a Ca2+-signal, whereby more than two action potentials were needed for a transient increase in the cytosolic free Ca2+-concentration. This data indicates that that the depolarization-phase of the action potential is not directly coupled to Ca2+-fluxes. Instead of a Ca2+-dependent activation, anion channels in glands of Dionaea muscipula thus seem to be activated by a Ca2+-independent signalling pathway. This type of activation mechanism can also be found in ABA-signalling in guard cells. There, a Ca2+-independent activation of S-type anion channels involves protein kinases like OST1 and CPK23, a process that is negatively regulated by the protein phosphatase ABI1. In this work, the redundancy between OST1 and CPK23 as well as components of the Ca2+-dependent signalling pathway could be shown in DEVC experiments with ost1-2 and cpk23-mutants of Arabidopsis thaliana, which still showed S-type anion channel activity. Furthermore, the activity of S-type anion channels in Arabidopsis thaliana mutants lacking the S-type anion channel SLAC1 indicates that redundant S-type anion channels exist, which might be activated by other protein kinases as well. ABA-induced S-type anion currents could also be measured in abi1-transformed Nicotiana tabacum plants, although these plants showed a reduced sensitivity to ABA compared to wildtype plants, suggesting an incomplete inhibition of the ABA-signalling pathway. The redundancy of intermediates in the ABA-signalling pathway could also be seen in studies with the lipid-based messenger phosphatidic acid, which only induced a slow and incomplete stomatal closure. However, this could point at a minor role for phosphatidic acid in the ABA-signalling pathway, as well. KW - Schließzelle KW - Plasmamembran KW - Schmalwand KW - Abscisinsäure KW - Venusfliegenfalle KW - Aktionspotenzial KW - S-Typ Anionenkanal KW - Ca2+-Signal KW - FURA KW - Tabak KW - S-typ anionchannel KW - Ca2+-signal KW - FURA Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52131 ER - TY - THES A1 - Scherzer, Sönke T1 - Biophysikalische Analyse und Rekonstitution des schnellen ABA-Signaltransduktionsweges aus Arabidopsis thaliana T1 - Biophysical analysis and reconstitution of the fast ABA-signal transduction pathway in Arabidopsis thaliana N2 - In dieser Arbeit sollte zunächst die Frage geklärt werden, ob es sich bei SLAC1 um den S-typ Anionenkanal handelt, oder ob SLAC1 nur ein essentieller Bestandteil des Anionenkanals ist. Zur funktionellen Charakterisierung des per se inaktiven SLAC1 Proteins, wurde mit der Suche nach SLAC1-aktivierenden Interaktionspartnern begonnen. Zu diesem Zweck bediente man sich der Methode der bimolekularen Fluoreszenz Komplementation (BiFC) im heterologen Expressionssystem der Xenopus Oozyten. Da bereits die Abhängigkeit der Anionenströme in Schließzellen von De- und Phosphorylierungsereignissen bekannt war, galt Ca2+-abhängigen Kinasen der CPK Familie, ABA-aktivierten Kinasen der SnRK Familie und Phosphatasen des PP2C Typs eine besondere Aufmerksamkeit. Mitglieder dieser Familien wurden bereits mit der Regulation des Stomaschlusses in Verbindung gebracht. Bei diesen Experimenten zeigte sich, dass SnRK2.6 (OST1) und mehrere CPKs deutlich mit SLAC1 physikalisch interagierten. Als Folge dieser Interaktion in Oozyten konnten schließlich nach Koexpression von SLAC1 zusammen mit den interagierenden Kinasen typische S-Typ Anionenströme detektiert werden, wie man sie aus Patch-Clamp Experimenten an isolierten Schließzellprotoplasten kannte. Hierbei bewirkten die Kinasen OST1 und CPK23 die größte Anionenkanalaktivierung. Dieses Ergebnis wird durch die BIFC-Experimente gestützt, da OST1 und CPK23 die stärkste Interaktion zu SLAC1 zeigten. Die elektrophysiologische Charakterisierung der SLAC1-Ströme im heterologen Expressionssystem der Xenopus Oozyten in Kombination mit in vivo Patch-Clamp Untersuchungen wies SLAC1 eindeutig als den lange gesuchten S-Typ Anionenkanal in Arabidopsis Schließzellen aus. Somit ist die direkte S-Typ Anionenkanalaktivierung durch OST1 auf dem Kalzium- unabhängigen und durch CPKs auf dem Ca2+-abhängigen ABA-Signaltransduktionsweg gelungen. Bei der Spezifizierung der einzelnen Kalzium-Abhängigkeiten dieser Kinasen in Oozyten und in in vitro Kinase Assays konnten weiterhin unterschiedliche Affinitäten der CPKs zu Kalzium festgestellt werden. So vermittelten die schwach Kalzium-abhängigen CPK6 und CPK23 bereits ohne einen Anstieg der zytosolischen Kalziumkonzentratiom über das Ruheniveau hinaus schon die Anionenkanalaktivierung. Die stark Kalzium-abhängigen CPK3 und CPK21 hingegen, werden erst aktiv wenn die ABA vermittelte Signaltransduktion zu einem Anstieg der Kalziumkonzentration führt. Da somit die Kinasen OST1, CPK6 und CPK23 ohne dieses Kalziumsignal aktiv sind, benötigen diese einen übergeordneten Regulationsmechanismus. In den BIFC-Experimenten konnte eine deutliche Interaktion der Phosphatasen ABI1 und 2 zu den SLAC1 aktivierenden Kinasen beobachtet werden. Dass diese Interaktion zu einem Ausbleiben der Anionenkanalaktivierung führt, wurde in TEVC-Messungen gezeigt. Mit diesen Erkenntnissen um die ABA-Signaltransduktionskette in Schließzellen konnten in in vitro Kinase Experimenten ihre einzelnen Glieder zusammengesetzt und der ABA-vermittelte Stomaschluss nachvollzogen werden. In dieser Arbeit zeigte sich, dass, das unter Wasserstress-Bedingungen synthetisierte Phytohormon, ABA von Rezeptoren der RCAR/PYR/PYL-Familie percepiert wird. Anschließend bindet die Phosphatase ABI1 an den ABA-RCAR1 Komplex. In ihrer freien Form inhibiert die Phosphatase ABI1 die Kinasen OST1, CPK3, 6, 21 und CPK23 durch Dephosphorylierung. Nach Bindung von ABI1 an RCAR1 sind diese Kinasen von dem inhibierenden ABI1 entlassen. Die Kinasen OST1, CPK6 und CPK23 stellen ihre Aktivität durch Autophosphorylierung wieder her. Die stark Ca2+-abhängigen Kinasen CPK3 und 21 benötigt hierzu noch einen ABA induzierten Ca2+-Anstieg im Zytoplasma. Diese Kinasen phosphorylieren anschließend SLAC1 am N-Terminus. Diese Phosphorylierung bewirkt die Aktivierung von SLAC1 woraufhin Anionen aus der Schließzelle entlassen werden. Das Fehlen dieser negativen Ladungen führt zur Depolarisation der Membran woraufhin der auswärtsgleichrichtende Kaliumkanal GORK aktiviert und K+ aus der Schließzelle entlässt. Der Verlust an Osmolyten bewirkt einen osmotisch getriebenen Wasserausstrom und das Stoma schließt sich. N2 - This work should clarify whether SLAC1 is the anion channel itself, or a regulatory component of S-type anion channels. To answer this question we searched for activating interaction partners of SLAC1. For this purpose the bimolecular fluorescence complementation (BiFC) technique was used following heterologous expression in Xenopus oocytes. Since anion currents of guard cells have been shown to be associated with phosphorylation events we focused on calcium dependent kinases (CPKs), ABA-activated SnRK kinases and PP2C phosphatases. Members of these families were already known to be involved in ABA-dependent stomatal closure. BIFC experiments revealed that SnRK2.6 (OST1) and several CPKs physically interact with SLAC1 in oocytes. Upon coexpression of SLAC1 with these interacting kinases in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Strongest anion channel activation was detected by coexpression of SLAC1 and OST1 or CPK23. These findings are supported by BIFC experiments detecting OST1 and CPK23 also as strongest interaction partners of SLAC1. The electrophysiological characterization of SLAC1 currents in Xenopus oocytes, in combination with in vivo patch clamp studies demonstrated that SLAC1 is the major component of S-type anion currents in Arabidopsis guard cells. Furthermore we could show that OST1 mediates direct S-type anion channel activation in a calcium-independent manner whereas CPKs are positive regulators of SLAC1 in the calcium-dependent branch of the ABA signaling pathway. Moreover in vitro kinase assays and TEVC measurements in oocytes revealed that there are two groups of SLAC1 activating CPK kinases with distinct Ca2+ affinities: i) the weak calcium-dependent CPK6 and CPK23 mediate anion channel activation even at the low resting calcium concentrations while ii) the high affinity kinases CPK3 and CPK21 are only active in response to an increase in cytosolic calcium concentration. Since OST1, CPK6 and CPK23 are active even without a preceding calcium signal, a master regulator is necessary which keeps those kinases inactive in the absence of ABA. BIFC experiments revealed a strong interaction of phosphatases ABI1 and 2 towards the SLAC1 activating kinases. Interestingly the integration of ABI1 into the SLAC1/kinase complex prevented SLAC1 activation in oocytes. Taken together our findings allowed us to reconstitute the ABA signaling pathway from the perception of ABA to the activation of S-type anion channel SLAC1, in turn leading to stomatal closure. Under water stress conditions the phytohormone ABA is synthesized and sensed by its receptors (RCAR/PYR/PYL). This allows binding of ABI1 to the active ABA-RCAR1 complex. In its free form ABI1 by dephosphorylation inhibits the kinases OST1, CPK3, 6, 21 and CPK23. After binding of ABI1 to RCAR1, however, these kinases are released from the inhibitory effect of ABI1. The kinases OST1, CPK23 and CPK6 become active by autophosphorylation. The strong Ca2+-dependent kinases CPK3 and CPK21 in addition need an ABA-induced rise in cytosolic calcium concentration to restore their activity. These active kinases phosphorylate SLAC1 at its N-terminus leading to the activation of SLAC1. The release of anions from guard cells depolarizes the guard cell membrane potential whereupon the outward rectifying potassium channel GORK is gated open. Finally the loss of osmolytes causes an osmotic driven water loss, the guard cells shrink and thus the stoma closes. KW - Schließzelle KW - Abscisinsäure KW - Calcium KW - OST1 KW - CPK KW - OST1 KW - CPK Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76199 ER - TY - THES A1 - Gohlke, Jochen T1 - Die Rolle von DNA-Methylierungen in der Entwicklung und Physiologie vonAgrobacterium-induzierten Arabidopsis-Tumoren T1 - The role of DNA methylation in development and physiology of Agrobacterium-induced Arabidopsis tumors N2 - Agrobacterium tumefaciens ist ein pathogenes Bodenbakterium, welches nach Integration seiner T-DNA in das pflanzliche Genom die Bildung von tumorartigen Wucherungen, den sogenannten Wurzelhalsgallen, an einer Reihe unterschiedlicher Wirtspflanzen verursacht. Die Expression der T-DNA-codierten Onkogene resultiert in der Proliferation und Differenzierung der sogenannten Wurzelhalsgallen, einem Prozess, welcher mit weitreichenden transkriptionellen und physiologischen Veränderungen verbunden ist. Für DNA-Methylierungen ist bekannt, dass diese zu Genexpressionsveränderungen beitragen, welche neoplastisches Wachstum in Säugetieren begünstigen. Über die Funktion epigenetischer Prozesse für die Physiologie und Entwicklung pflanzlicher Tumore ist bisher hingegen wenig bekannt. Daher wurde in dieser Arbeit das Methylierungsmuster von Wurzelhalsgallen, welche an Arabidopsis thaliana induziert wurden, sowohl genomweit als auch auf Basis einzelner Gene bestimmt. Dabei zeigte sich, dass die Onkogene ipt, iaaH und iaaM welche mit der T-DNA ins Genom integriert werden und die Proliferation auslösen, im Tumorgewebe unmethyliert vorliegen. Dennoch sind die Onkogene empfänglich gegenüber epigenetischen Modifikationen, da die siRNA-vermittelte Methylierung sowohl ihre Transkription als auch das Tumorwachstum unterbindet. Eine genomweite Studie der DNA-Methylierungsmuster mittels Tiling-Array-Analysen von immunopräzipitierter methylierter DNA zeigte ein global hypermethyliertes Tumor-Genom im Vergleich zum tumorfreien Sprossgewebe. Diese Beobachtungen stehen im Gegensatz zu den Methylierungsmustern der meisten Säuger-Tumore, welche typischerweise mit globaler Hypomethylierung und lokaler Hypermethylierung von Promotor-Sequenzen assoziiert sind. Im Unterschied dazu waren die Promoter-Sequenzen im Pflanzentumor eher hypomethyliert. Die Methylierungsunterschiede zwischen Wurzelhalsgallen und Sprossgewebe korrelierten mit transkriptionellen Veränderungen. Speziell Gene, welche in Entwicklungsprozessen und Zellteilung involviert sind, waren von Methylierungsänderungen betroffen. Dies impliziert, dass insbesondere diese Prozesse epigenetisch kontrolliert werden. Die Methylierung von Genen, welche einer transkriptionellen Kontrolle durch ABA unterliegen, war durch eine ABA-Behandlung induzierbar. DNA-Methylierungen kontrollieren somit wahrscheinlich essenzielle physiologische Prozesse während der Tumorentwicklung wie beispielsweise die ABA-vermittelte Trockenstressanpassung. Arabidopsis-Mutanten, welche in Nicht-CG-Methylierungsprozessen beeinträchtigt sind, entwickelten größere Tumore als die Kontrollpflanzen der entsprechenden Wildtypen. Dies weist auf eine Inhibierung des Tumor-Wachstums durch ein hypermethyliertes Genom, insbesondere der Nicht-CG-Motive hin. Insgesamt zeigen die Ergebnisse, dass Genexpression, physiologische Prozesse und die Entwicklung pflanzlicher Tumore einer Regulation durch DNA-Methylierung unterliegen. N2 - Agrobacterium tumefaciens is a plant pathogen which causes formation of crown gall tumors on a wide range of host species as a result of integration of its T-DNA into the plant genome. Expression of the T-DNA encoded oncogenes triggers proliferation and differentiation of crown galls, a process which is associated with severe global gene expression and physiological changes. DNA methylation changes are known to contribute to transcriptional changes which facilitate neoplastic growth in mammals. However, the role of epigenetic processes in physiology and development of plant tumors is not yet understood. Therefore, in this study the methylation pattern of Arabidopsis crown galls was analyzed on a genome-wide and single gene level. The proliferation-provoking oncogenes ipt, iaaH and iaaM, which are integrated into the plant genome along with the T-DNA, were shown to be unmethylated in the tumor genome. Nevertheless, they are susceptible to epigenetic modifications as siRNA-mediated methylation prevented both oncogene transcription and subsequent tumor development. The genome-wide analysis of DNA methylation by methylcytosine immunoprecipitation and tiling arrays revealed a globally hypermethylated tumor genome compaired to that of the tumor-free stems. This contrasts the methylation patterns in most mammalian cancers, which are typically associated with global hypomethylation and local hypermethylation of gene promoters. In crown gall tumors, promoters where rather hypomethylated. Methylation differences of crown galls and stem tissue correlated well with transcriptional changes. Especially genes involved in development and cell division were differentially methylated, implying that these processes are epigenetically controlled in the tumor. Methylation of genes which are known to be transcriptionally inhibited in an ABA-dependent manner was inducible upon ABA treatment. This suggests that DNA methylation controls essential physiological processes during crown gall development, such as ABA-mediated drought stress adaption. Arabidopsis mutants impaired in non-CG methylation developed larger tumors than wild-type controls, which indicates that hypermethylation of non-CG motifs inhibits plant tumor growth. In summary, the results of this study provide evidence that gene expression, physiological processes and the development of plant tumors are regulated by DNA methylation. KW - Abscisinsäure KW - Ackerschmalwand KW - DNS KW - Methylierung KW - Wurzelhalsgalle KW - DNA-Methylierung KW - Wurzelhalsgallen KW - ABA KW - Tumorentwicklung KW - DNA methylation KW - crown galls KW - ABA KW - tumor development Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77732 ER -