TY - THES A1 - Galka, Frank T1 - Untersuchungen zum Proteom und zur Funktion von sekretierten Proteinen und äußeren Membranvesikeln von Legionella pneumophila T1 - Proteomic and functional analyses of secreted proteins and outer membrane vesicles of Legionella pneumophila N2 - Das Gram-negative Bakterium Legionella pneumophila ist der Haupterreger der humanen Legionärskrankheit, einer schweren atypischen Pneumonie. Aufgrund mangelnder Diagnostik bleibt L. pneumophila als Krankheitsverursacher jedoch oft unerkannt. Neuesten Schätzungen des Kompetenznetzwerkes für ambulant erworbene Pneumonien (CAPNETZ) zufolge könnten Legionellen in Deutschland für jährlich ca. 21 000 Pneumonien verantwortlich sein, etwa doppelt so viele Fälle wie bisher angenommen. Die Pathologie der humanen Infektion zeichnet sich durch extrazelluläre Effekte aus, für die in den letzten Jahren vielfältige sekretierte Effektormoleküle (SSPs) verantwortlich gemacht wurden. Darüber hinaus tragen spezielle Sekretionsmaschinen wie das Dot/Icm Typ-IV-Sekretionssystem sowie ersten Hinweisen entsprechend Membranvesikel, die von der äußeren Membran der Bakterien abgeschnürt werden (OMVs), zur intrazellulären Pathogenität von L. pneumophila bei. In der vorliegenden Dissertation bildet die umfassende Charakterisierung des Sekretoms von L. pneumophila den Schwerpunkt. Diese ist untergliedert in (i) Untersuchungen zur OMV-Produktion im Lebenszyklus von L. pneumophila, (ii) Proteomcharakterisierung der Sekretomfraktionen SSP und OMV und (iii) funktionale Analyse der Sekretomfraktionen. Für einen Beitrag von OMVs zur L. pneumophila-Pathogenese ist deren Produktion während extra- und intrazellulären Wachstums essentiell. Mit Hilfe verschiedener Mikroskopie-Techniken wird in dieser Dissertation gezeigt, dass die Abschnürung von OMVs sowohl extrazellulär als auch intrazellulär in Legionella-spezifischen Phagosomen stattfindet und von einer intakten Bakterienmembran erfolgt. Des Weiteren werden OMVs nicht nur während der exponentiellen, sondern auch während der stationären Phase produziert. Diese Beobachtung ist bedeutend, weil sich L. pneumophila während der postexponentiellen Phase in die transmissive Form mit voller Virulenz differenziert und sich der Wechsel in die virulente Form folglich auch in der Zusammensetzung der OMVs widerspiegeln könnte. Der zweite Teil beschäftigt sich mit der Proteomanalyse der Sekretomfraktionen. Die Proteinidentifikation ergab 181 nicht-redundante Proteine im L. pneumophila-Sekretom, von denen 107 für die SSP-Fraktion und 33 für die OMV-Fraktion hochspezifisch sind. In beiden Fraktionen sind insgesamt 22 Typ-II-Sekretionssubstrate enthalten, die verschiedene degradierende Enzymaktivitäten aufweisen. Außerdem wurden 38 bisher putative Typ-II-Substrate, 3 Typ-IV-Substrate und 7 Eukaryoten-ähnliche Proteine detektiert. Die Analyse der Verteilung der Proteine zeigt, dass der prozentuale Anteil der „Virulenz-/Pathogenese“-Proteine in der OMV-Fraktion mit 24% gegenüber 11% in der SSP-Fraktion mehr als doppelt so hoch liegt. Acht Faktoren, u. a. das Mip-Protein, einer der Haupt-Virulenzfaktoren von L. pneumophila, sind nur auf OMVs beschränkt. Dies könnte darauf hindeuten, dass OMVs als spezifische Transportmittel für Virulenz-assoziierte Effektoren dienen. In der funktionalen Analyse der SSP- und OMV-Fraktionen wurden anhand verschiedener Techniken Aspekte untersucht, die während des Infektionsprozesses eine Rolle spielen. Dabei zeigt sich, dass SSPs und OMVs proteo- und lipolytische Enzymaktivitäten besitzen, die zur Zerstörung der Alveolaroberfläche, zur Transmigration der Bakterien durch Lungenepithelbarriere und Basallamina und letztendlich zur Ausbreitung von L. pneumophila im Lungengewebe und zur Milz beitragen könnten. Jedoch konnten für OMVs keine naheliegenden zytotoxischen oder zytolytischen Eigenschaften nachgewiesen werden. In Alveolarepithelzellen können sie ein spezifisches Zytokinsekretionsprofil induzieren, was ihre modulierenden Effekte auf Wirtszellen bestätigt. Die gezeigte Bindung von OMVs an Alveolarepithelzellen bildet die Voraussetzung für eine Interaktion mit den Wirtszellen. Ob dabei eine Fusion mit der Zytoplasmamembran und ein möglicher Transfer von Effektoren in die Wirtszelle stattfinden, bleibt zu klären. Abschließend werden diskutierte Funktionen sekretierter OMVs während der L. pneumophila-Infektion in einem Modell zusammengefasst. Diese neuen Ergebnisse zum Proteom des Sekretoms und zur Funktion von L. pneumophila-OMVs tragen zum besseren Verständnis der Interaktion von L. pneumophila mit seiner Umwelt und der Pathogenese bei. Gleichzeitig liefern sie eine wichtige theoretische Grundlage für zukünftige Forschungsarbeiten über Interaktionsprozesse und beteiligter Effektoren, deren tiefgreifendes Verständnis die Vorraussetzung für die Entwicklung neuer Strategien in der Therapie von Legionella-Infektionen bildet. N2 - The Gram negative bacterium Legionella pneumophila is the aetiological agent of Legionnaires’ disease, a severe atypical form of pneumonia. Due to poor diagnostics, in many cases L. pneumophila is not detected as causative organism. According to recent evaluations of the “Kompetenznetzwerkes für ambulant erworbene Pneumonien” (CAPNETZ), Legionella might be responsible for ca. 21.000 pneumonia every year in Germany, which is twice as much as originally estimated. Massive extracellular damages are typical features of the pathology during human infection, for which secreted effector molecules (SSPs) have been made responsible. Moreover, recent studies demonstrated that sophisticated secretion machineries like the Dot/Icm type-IV secretion system as well as membrane vesicles, which are pinched off the outer bacterial membrane (OMVs), can contribute to intracellular pathology of L. pneumophila. The present thesis deals with the comprehensive characterisation of the L. pneumophila secretome and is subdivided in (i) examinations on OMV production during the L. pneumophila life cycle, (ii) proteome characterisation of secretome fractions SSP and OMV, and (iii) functional analysis of the secretome fractions. To contribute to L. pneumophila pathogenesis, the production of OMVs during extra- and intracellular growth is essential. By applying various microscopical techniques it is shown that OMVs are pinched off from an intact bacterial membrane when residing extracellularly as well as intracellularly in Legionella-specific phagosomes. Moreover, OMVs are produced during exponential and stationary phase. This observation is of relevance as L. pneumophila differentiates into the transmissive form, which owns full virulence traits, during the post-exponential phase. Consequently, the transformation into the virulent form might be reflected in the composition of OMVs. The second section deals with the proteome analysis of secretome fractions. The protein identification resulted in 181 non-redundant L. pneumophila secretome proteins, of which 107 are highly specific for the SSP fraction and 33 for OMVs, respectively. Both fractions contain a total of 22 type-II secretion substrates which exhibit various degradative enzyme activities. Furthermore, 38 so far putative type-II substrates, 3 type-IV substrates and 7 eukaryotic-like proteins were detected. The analysis of the distribution of proteins demonstrates that the percentage of virulence-/pathogenicity-involved proteins differs heavily between 24% at the OMV fraction and 11% at the SSP fraction. Eight factors including Mip, which is one of the main virulence factors of L. pneumophila, were unique to OMVs. This suggests that OMVs might serve as specifc carriers for virulence-associated effectors. In the functional analysis of SSP and OMV fractions several techniques were applied to highlight aspects which play a role during the infection process. The results show that SSPs and OMVs possess proteolytic and lipolytic enzyme activities which might contribute to the destruction of the alveolar surface, the transmigration of bacteria through the lung epithelial barrier and the basal lamina, and finally to the dissemination of L. pneumophila in the lung tissue and to the spleen. However, neither cytotoxic nor cytolytic activities were observed for OMVs. In alveolar epithelial cells OMVs are able to induce a specific cytokine secretion profile, confirming their modulatory effects on host cells. The demonstrated bindung of OMVs on alveolar epithelial cells is the precondition for an interaction with host cells. Whether OMVs fuse with cytoplasmic membranes or transfer effector molecules into the host cell remains to be established. Finally, discussed functions of secreted OMVs during L. pneumophila infection are combined in a model. These results on the secretome proteome and the functions of L. pneumophila OMVs contribute to a better understanding of the interaction of L. pneumophila with its environment and of pathogenesis. At the same time the data provide an important theoretical basis for future studies on interaction processes and involved effectors, whose comprehensive understanding is required for the development of novel strategies in the therapy of Legionella infections. KW - Legionärskrankheit KW - äußere Membranvesikel KW - sekretierte Proteine KW - Proteom KW - Sekretom KW - Legionnaires' disease KW - outer membrane vesicles KW - secreted proteins KW - proteome KW - secretome Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27075 ER - TY - THES A1 - Schwedhelm, Kai Florian T1 - Optimierte Methoden der Magnetresonanz-Spektroskopie zur molekularen Charakterisierung neuartiger Wirkstoffe gegen Infektionskrankheiten T1 - Optimized methods in nuclear magnetic resonance spectroscopy for charakterization of novell agents against infectious diseases N2 - In diesem Projekt wurde die Wechselwirkung des PPIase-Enzyms MIP mit Kollagen IV unter- sucht. MIP ist maßgeblich für die Infektiösität von Legionella pneumophila verantwortlich, einem Bakterium, welches im Menschen schwere Lungenentzündungen auslösen kann. Das Enzym zeigt eine hohe Affinität gegenüber einem kurzen Peptidsequenzabschnitt in Kolla- gen IV (genannt „P290”), welches unter anderem im Epithel der Lunge zu finden ist. Die Interaktionsoberfläche der Moleküle wurde durch den Einsatz eines paramagnetischen Spin-Labels in NMR-Experimenten charakterisiert. Mit Hilfe von Docking und Moleküldy- namiksimulationen konnte aus diesen Daten ein Modell des MIP-Kollagen-Komplexes be- rechnet werden. Es wurde gezeigt, dass MIP als Dimer in der Lage ist, nach Kollagen IV zu „greifen” und sich dann an das Molekül heranzuziehen. Wahrscheinlich dient dieser Mechanismus der Adhä- sion von L. pneumophila an die Wirtszelle. Neben der zuvor postulierten Destabilisierung von Kollagen IV durch MIP, welche hier nicht beobachtet wurde, könnte die Adhäsion ein wichtiger Faktor für die Virulenz von L. pneumophila sein. Weiterhin wurde die inhibitorische Wirkung des isolierten Peptids P290 auf die biologische PPIase-Aktivität von MIP untersucht. Durch NMR-Messungen und anschließenden Mole- küldynamiksimulationen konnte gezeigt werden, dass P290 sich stabil in die Bindungsta- sche von MIP einlagert und durch den Sequenzabschnitt -CYS130-PRO131---TRP134- das Enzym blockiert. Die übrigen Aminosäuren in P290 dienen der Stabilisierung des Kom- plexes und sorgen für die Selektivität von P290, welches, im Unterschied zu bekannten Wirkstoffen, das humane Homolog zu MIP nicht inhibiert. Die Vorhersagen der Simulatio- nen konnten durch ein Peptid Microarray und Messungen der enzymatischen Aktivität von MIP in PPIase-Assays bestätigt werden. Die Ergebnisse wurden zur Optimierung von P290 eingesetzt, indem die Peptidsequenz durch den Austausch zweier Aminosäuren verändert und das Molekül zu einem Ring geschlossen wurde. Die entstandene Struktur besitzt deut- lich verbesserte Bindungseigenschaften und könnte künftig als Basis für eine neue Klasse von Wirkstoffen gegen L. pneumophila dienen. In diesem Projekt wurde eine Methode zur Aufklärung der Molekülstruktur neuartiger Wirkstoffe gegen Malaria im Komplex mit ihrem paramagnetischen Zielmolekül etabliert und weiterentwickelt. Die Vorgehensweise leitet intermolekulare Distanzinformationen aus der sog. paramagnetischen Relaxation ab, einem Effekt, der den Einsatz klassischer Me- thoden zur Molekülstrukturaufklärung mittels NMR verhindert. Es werden drei Parameter durch NMR-Spektroskopie bestimmt: 1. die longitudinale Relaxationszeit der Wasserstoff- atome in Wirkstoffmolekül, 2. die effektive Korrelationszeit des Komplexes und 3. der Spin- Zustand des Eisenions im Zielmolekül. Mit Hilfe dieser Messmethode konnte die Komplexstruktur mehrerer bekannter Medika- mente gegen Malaria aufgeklärt werden. Weiterhin wurden zwei neue Klassen von Wirkstof- fen untersucht, die C,C-gekoppelten Naphthylisoquinolin-Alkaloide und die N,C-gekoppelte Naphthylisoquinolin-Alkaloide. In Übereinstimmung mit theoretischen Vorhersagen aus der Literatur lagern sich die Wirkstoffe stets um einen Winkel geneigt und in Richtung des Randes des Zielmoleküls verschoben an. Diese Konfiguration maximiert die attraktiven π- π-Wechselwirkungen zwischen den Molekülen. Aufgrund der gewonnenen Ergebnisse aus NMR, UV-Spektroskopie und Massenspektrome- trie konnte die Existenz eines bisher nicht bekannten Tetramer-Komplexes nachgewiesen werden, welcher eine wichtige Zwischenstufe in der Biokristallisation von Hämozoin durch die Malariaparasiten darstellen könnte, und Ansatzpunkte für den weiterhin nicht vollstän- dig bekannten Wirkmechanismus der meisten Antimalaria-Wirkstoffe liefert. Für die Naphthylisoquinolin-Alkaloide zeigte sich weiterhin, dass Wasser eine essenzielle Rolle in der Komplexbildung spielt. In Moleküldynamiksimulationen der N,C-gekoppelten Naphthylisoquinolin-Alkaloide konnte die Entstehung einer Wasserstoffbrücke zwischen Wirkstoff und Zielmolekül gezeigt werden, welche einen zusätzlichen Weg der Komplex- stabilisierung neben den bereits bekannten π-π-Wechselwirkungen aufzeigt. Die N,C-NIQs konnten erstmals auch bei einem pH-Wert von 5,6 beobachtet werden, einer chemischen Umgebung wie sie auch in-vivo in der Verdauungsvakuole des Malariaparasiten herrscht. N2 - Summary Even in the 21st century, infectious diseases remain the predominant cause of death world- wide. According to reports of the World Health Organisation, 2 million people die of Malaria every year, most of which are children under the age of five years. Respiratory infections claim an additional 3.9 million lives. Other infections are held responsible for a total of more than 10 million deaths. Global climate change leads to the occurrence of tropical in- fections well beyond their former endemic regions. Additional challenges arise due to the growing number of resistant organisms, rendering most known treatments ineffective. To achieve sustained success in the fight against infectious diseases, a detailed understan- ding on the mode of action of newly developed substances on a molecular level is essential. In this thesis, magnetic resonance spectroscopy is used as a tool for molecular structure determination. My results may offer incentives for the development of new agents against infectious diseases and their continuous optimization. 4.1 The MIP-collagen IV complex The scope of this project was to investigate the interaction between the PPIase enzyme MIP and the NC1 (non-collagenous 1) domain of collagen IV. The MIP (macrophage infectivity potentiator) protein is the major virulence factor of Legionella pneumophila, a bacterium causing severe lung infections in humans. MIP exhibits high affinity towards a short peptide sequence in collagen IV (“P290”). Amongst others, this type of collagen is found in the epithelial cells of the lung. In this work, the interface of interaction between P290 and MIP was mapped using a pa- ramagnetic spin label in combination with nuclear magnetic resonance spectroscopy expe- riments. Labeled P290 strongly enhances the relaxation rates of individual amino acids in MIP, which are in the immediate vicinity (within 1 nm) of the spin label. The enhancedrelaxation rates were detected through T2-sensitive HSQC experiments. Subsequently, re- sults were incorporated in docking and molecular dynamic (MD) simulations to compute a model of the MIP-collagen IV complex. Results show the MIP dimer “grabbing” collagen IV with both enzymatic domains and pul- ling the molecules closer together. We suggest that this molecular adhesion mechanism may play a key role in the invasion of host tissue by L. pneumophila. A possible destabilization of collagen IV through the enzymatic activity of MIP, as suggested previously by other groups, was not observed. Additionally, our co-operation partners were able to demonstrate that P290, as an indi- vidual peptide, inhibits the biological PPIase activity of MIP, while leaving human homo- logue enzymes untouched. My findings from NMR measurements and subsequent MD si- mulations showed that P290 occupies the MIP binding pocket via the amino acid sequence -CYS130-PRO131---TRP134-. This sequence element is stabilized via the attachment of the terminal residues of P290 to the surface of MIP, thereby enabling P290 to distinguish between MIP and human enzymes. Based on these results, we constructed optimized versions of P290 by ring closure and repla- cement of two amino acids. Our co-operation partners showed that the resulting structures exhibit improved binding properties on a peptide microarray and may provide the basis for a new class of inhibitors targeting Legionella pneumophila. 4.2 Structure elucidation of paramagnetic complexes for- med by novel antimalarial agents We used paramagnetic NMR spectroscopy to characterize the formation of complexes of several antimalarial compounds with their presumed target “heme”. A paramagnetic Fe(III) ion is located at the center of heme, which influences the longitudinal relaxation rates of nearby proton spins. This effect interferes with common strategies for NMR structure elucidation, but in this study was taken advantage of in a newly developed method to map intermolecular distances with high precision using NMR inversion recovery experiments at 9.4 T, 14.1 T, 17.6 T, and 18.8 T. This method was utilized to solve the molecular structure of known drugs against Mala- ria as well as two new classes of antimalarial agents (the C,C-coupled naphthylisoquinoline alkaloids and the N,C-coupled naphthylisoquinoline alkaloids) in complex with their target molecule: heme. In accordance with theoretical predictions from the literature, we sho- wed that the drug molecules align in a configuration maximizing attractive π-π stacking interactions between the molecules. In combination with findings from NMR, UV spectroscopy and mass spectrometry, we de- monstrated the formation of a previously unknown tetrameric complex. This complex may represent an important step in the mode of action of antimalarial drugs. Additionally, results from NMR measurements and molecular dynamics simulations provided insight into the important role of H2O for complex stabilization. We were able to demonstrate the formation of a so far undescribed hydrogen bond between drug and target. Furthermore, it was possible to investigate the N,C-coupled naphthylisoquinoline alkaloids at pH 5.6, which exactly matches the chemical environment in the food vacuole of the ma- larial parasite in-vivo. All these findings may contribute to a deeper understanding of the mode of action of new antimalarial agents. KW - NMR-Spektroskopie KW - Legionella pneumophila KW - Legionellen KW - Legionärskrankheit KW - Würzburg / Sonderforschungsbereich Erkennung KW - NMR KW - Malaria KW - Legionella KW - paramagnetic resonance KW - spin label Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38535 ER - TY - THES A1 - Sippel, Martin T1 - Computational Structure-based Design Approaches: Targeting HIV-1 Integrase and the Macrophage Infectivity Potentiator of Legionella pneumophila T1 - Computergestütztes strukturbasiertes Design bei HIV-1 Integrase und dem Macrophage Infectivity Potentiator (MIP) von Legionella pneumophila N2 - Die vorliegende Arbeit thematisiert das computergestützte strukturbasierte Design auf dem Gebiet der HIV-1-Integrase und des Macrophage Infectivity Potentiator (MIP) von Legionella pneumophila. Die durchgeführten Studien geben wertvolle Aufschlüsse über den Wirk-mechanismus einer bekannten Integrase-Inhibitorenklasse and zeigt darüber hinaus einen neuartigen Ansatz zur Integrase-Inhibition auf. Im Falle des MIP-Enzyms konnten zwei niedermolekulare Inhibitoren ermittelt werden. Die Integrase-Studien ergaben wertvolle Informationen im Hinblick auf das Design neuer Inhibitoren. Docking-Experimente konnten die Hypothese weiter untermauern, nach der die Klasse der Diketosäure-Inhibitoren nicht als freie Liganden, sondern als Metallion-Komplexe an das aktive Zentrum der Integrase binden. Die Ergebnisse dieser Studie helfen dabei, das Verständnis über den Wirkmechanismus dieser wichtigen Klasse von Integrase-Inhibitoren weiter zu vertiefen. Um der Entwicklung von Integrase-Inhibitoren einen neuen Impuls zu geben, wurde eine neue Strategie zur Inhibition dargelegt: Anstatt an das aktive Zentrum soll eine neue Inhibitor-Klasse an das Dimerisierungs-Interface eines Integrase-Monomers binden, die katalytisch notwendige Dimerisierung verhindern und somit die enzymatische Aktivität stören. Das Hauptproblem hierbei bestand in den fehlenden Strukturdaten des freien Monomers. Hierzu wurden Molekulardynamik-Simulationen durchgeführt, um nähere strukturelle Informationen zu erhalten. Momentaufnahmen unterschiedlicher Konformationen dienten als Input-Strukturen für eine Docking-Studie mit dem peptidischen Inhibitor YFLLKL, um dessen Bindemodus aufzuklären. Hierbei zeigte sich, dass dieser Ligand an eine Interface-Konformation bindet, die durch eine Y-förmige Bindestelle charakterisiert ist. Im nächsten Schritt sollte diese Protein-Konformation mit kleinen, nicht-peptidischen Molekülen adressiert werden. Die erste Strategie bestand darin, ein Pharmakophor-Modell zu erstellen, das zur Suche nach Molekülen mit einer guten Komplementarität zur Y-förmigen Bindetasche geeignet ist. Das folgende virtuelle Screening ergab zehn Verbindungen, die eine gute Komplementarität und günstige hydrophobe Wechselwirkungen aufwiesen. Leider zeigte keine der Verbindungen eine reproduzierbare Aktivität im Integrase-Assay. Hierbei verbleiben jedoch gewisse Zweifel, da in dem Assay die Zugabe von BSA vorgeschrieben war, das möglicherweise die hydrophoben Inhibitor-Kandidaten gebunden hat. Die erwähnte erste Strategie wurde überdacht: In einem zweiten Ansatz galt die Hauptaufmerksamkeit der Absättigung von wasserstoffbrückenbildenden Resten. Diese waren zuvor von den eher hydrophoben Verbindungen nicht optimal abgesättigt worden. Zwei Pharmakophor-Modelle wurden erstellt und in einem virtuellen Screening eingesetzt: Docking-Studien der Hits zeigten jedoch, dass nach wie vor viele wasserstoffbrückenbildende Reste des Proteins nicht vom Liganden abgesättigt wurden. Nach abschließender eingehender Betrachtung der Bindemoden der verbliebenen Moleküle aus dem virtuellen Screening konnten nur acht für weitere Testungen ausgewählt werden (Ergebnisse der experimentellen Testung durch Kooperationspartner stehen noch aus). Diese geringe „Ausbeute“ an geeigneten Verbindungen für das Integrase-Dimerisierungsinterface zeigt, wie schwer dieses Target zu adressieren ist: Das Interface weist eine schnell wechselnde Abfolge von basischen, sauren und hydrophoben Resten auf. Im Gegensatz zu anderen Protein-Protein-Interfaces zeigt das Integrase-Interface keine „aufgeräumte“ Bindetasche mit klar voneinander getrennten hydrophoben und hydrophilen Bereichen. Für das zweite Enzym, MIP, konnten mit Hilfe des strukturbasierten Designs zwei niedermolekulare Inhibitoren gefunden werden. Beide Verbindungen führten zu einer deutlichen Abnahme der katalytischen Aktivität. Soweit bekannt, sind bisher keinerlei niedermolekulare MIP-Inhibitoren veröffentlicht. Der Vergleich von MIP mit der humanen PPIase FKBP12 zeigte eine größtenteils ähnliche Tasche, die jedoch einen entscheidenden Unterschied aufweist, nämlich in der Orientierung des Restes Tyr109. Die detaillierte Betrachtung der Strukturdaten beider Enzyme konnte schließlich eine Erklärung liefern, warum ein ketoacyl-substituiertes Pipecolinderivat nicht an MIP bindet, ein sulfonsubstituiertes Pipecolinderivat hingegen das Enzym inhibiert. Die Erkenntnisse über das Inhibitoren-Design für Legionella-MIP können auch auf andere Organismen (z.B. Trypanosomen) übertragen werden, bei denen ebenfalls (homologes) MIP ein Pathogenitätsfaktor ist. N2 - In this thesis, computational structure-based design approaches were employed to target the HIV-1 integrase and the macrophage infectivity potentiator (MIP) of Legionella pneumophila. The thesis yields valuable information about the mechanism of action of a known class of integrase inhibitors and a novel approach towards enzyme inhibition, which still is mainly unaddressed in current integrase research. For the MIP enzyme, two small-molecule MIP inhibitors were discovered. The computational studies of HIV-1 integrase have provided valuable information for IN inhibitor design. Docking experiments supported the hypothesis that the well-known diketo acid inhibitors enter the IN active site not as free ligands, but rather as metal complexes. These results help to reveal the mechanism of action of this important class of IN inhibitors.To give an impulse for the development of a novel class of inhibitors, a new strategy towards IN inhibition was introduced: An alternative binding site, the dimerization interface of an IN catalytic core domain monomer, was explored for inhibitor design. The lack of structural data of the free monomer was overcome by extensive MD studies. Snapshots derived from the MD simulation were used as protein input structures in a docking study with the inhibitory peptide YFLLKL to reveal its potential binding mode. The docking procedure showed that the peptidic ligand binds to a dimerization interface conformation which shows a Y-shaped binding site.. The next step was to address this protein conformation with small, non-peptidic molecules. The first strategy towards finding small-molecule interface binders was to create a pharmacophore model with hydrophobic features and shape constraints, aiming to find molecules with a good complementarity to the Y-shaped dimerization interface. Virtual screening yielded a total of 10 compounds, which all displayed good shape complementarity and favorable hydrophobic interactions. Unfortunately, none of the compounds showed a reproducible inhibitory activity in biological assays. Some doubts remain about the validity of the assay results: The use of BSA was critical, since it is not unlikely that BSA “intercepted” the hydrophobic candidate compounds. The first strategy towards finding small-molecule dimerization inhibitors was reconsidered: In the second approach, the satisfaction of hydrogen bonding residues at the dimerization interface, was of major interest. Two pharmacophore models were employed, which retrieved several hundred hit molecules. However, docking of these molecules showed that still many hydrogen bonding groups of the protein remained unaddressed by the ligands. Eventually, after visual inspection, only eight molecules were selected as candidate compounds for further testing (results pending). This small “yield” underlines the difficulties in finding interface binders: The IN dimerization interface is a peculiar target with frequently alternating basic, acidic, and hydrophobic residues. It is not a well-ordered binding site with continuous hydrophobic areas and distinct hydrogen bond donors / acceptors. Other protein-protein interfaces show such well-ordered binding sites. Accordingly, the peculiarity of the IN dimerization interface, in addition to the delicate task of disrupting protein-protein interactions at all, makes the development of IN dimerization inhibitors very challenging. For MIP, the studies revealed two experimentally validated MIP inhibitors, which significantly reduce MIP enzymatic activity. To our knowledge, no small-molecule MIP inhibitor has been reported in the literature so far. A detailed analysis of the available structural data of MIP and a comparison to the human PPIase counterpart, FKBP12, pointed out a conformational diversity among the MIP structures and a crucial difference between the two PPIases, which could be traced to mainly one residue (Tyr109). The detailed comparison of FKBP12 and MIP complex structures made it possible to give an explanation, why a ketoacyl-substituted pipecoline derivative most probably does not bind to MIP, but a sulfone-substituted pipecoline derivative does bind to MIP. Knowledge of Legionella MIP inhibitors could be transferred also to other organisms (e.g. trypanosoms), where homologous MIP proteins are also pathological factors. KW - Legionella pneumophila KW - Integrasen KW - HIV KW - Arzneimitteldesign KW - Molekulardesign KW - Legionärskrankheit KW - Arzneimitteldesign KW - Molecular modelling KW - HIV KW - Legionnaires' Disease KW - drug design Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51247 ER - TY - THES A1 - Juli, Christina T1 - Synthese und Charakterisierung von potenziellen Inhibitoren des „Macrophage infectivity potentiator“ (Mip) Proteins von Legionella pneumophila - Ein neuer Ansatz in der Legionellose-Therapie T1 - Synthesis and characterization of potential inhibitors of the "macrophage infectivity potentiator" (mip) protein of Legionella pneumophila - A new approach for the therapy of legionellosis N2 - Die vorliegende Arbeit beschäftigt sich mit der Synthese und Charakterisierung potenzieller Inhibitoren des Oberflächenproteins Mip von Legionella pneumophila. Der gramnegative Mikroorganismus ist der ursächliche Erreger der Legionellose. Die Erkrankung kann in zwei verschiedenen Formen auftreten, dem Pontiac-Fieber, einer Grippe-ähnlichen Atemwegserkrankung, und der Legionärskrankheit, einer schweren Lungenentzündung mit einer Mortalitätsrate von bis zu 30 %. Natürliche und künstlich geschaffene Süßwassersysteme bilden den biologischen Lebensraum der Bakterien. Aus dieser Umgebung werden sie über technische Vektoren wie Duschen oder Klimaanlagen durch Inhalation kontaminierter Aerosole auf den Menschen übertragen, wo sie alveoläre Makrophagen besiedeln und eine pulmonale Infektion hervorrufen. Um die Zellen in der Lunge zu erreichen, müssen die Mikroorganismen jedoch zuerst die alveoläre Barriere, bestehend aus einer Epithelzellschicht und extrazellulärer Matrix, überwinden. Dafür ist das Oberflächenprotein Mip, der Hauptvirulenzfaktor, verantwortlich. Mip ist ein Homodimer, das sich aus einer C- und einer N-Domäne zusammensetzt. Während der N-Terminus für die Dimerisierung des Proteins verantwortlich ist, weist der C-Terminus die typische Faltung einer Peptidyl-Prolyl-cis/trans-Isomerase (PPIase) auf. Der Vergleich der Aminosäuresequenz der Mip-C-Domäne mit der Domäne verschiedener humaner PPIasen zeigte eine besonders große Homologie zu FKBP12, welches zur Familie der FK506-bindenden Proteine gehört und eine wichtige Rolle innerhalb des menschlichen Immunsystems spielt. Bemerkenswerterweise hemmen bekannte immunsuppressive FKBP12-Inhibitoren wie FK506 und Rapamycin neben der humanen PPIase ebenfalls das bakterielle Mip. Außerdem wurde beobachtet, dass die C-terminale Mip-PPIase an Kollagen IV, den Hauptbestandteil in der menschlichen Lunge, bindet und somit für die Transmigration der Legionellen in die Lunge verantwortlich ist. Mip-Inhibitoren sollten demnach eine Legionellen-Infektion verhindern können. Zur Verifizierung der Hypothese sollten daher im Rahmen dieser Arbeit neue Leitstrukturen für Mip-PPIase-Inhibitoren entwickelt werden. Mit Hilfe von Molecular-Modelling-Untersuchungen basierend auf der NMR-Struktur 2VCD wurde als eine mögliche Leitstruktur N,N-Dimethylphenylsulfonsäureamid identifiziert. Deshalb sollten diese Verbindung sowie Analoga hergestellt werden. Obwohl die Immunsuppressiva FK506 und Rapamycin Mip-Inhibitoren darstellen, können sie auf Grund ihrer immunsuppressiven Eigenschaften nicht in der Legionellosetherapie eingesetzt werden. Die makrozyklischen Immunsuppressiva setzen sich im Gegensatz zu N,N-Dimethylphenylsulfonsäureamid allerdings aus zwei strukturellen Einheiten, einer Binde- sowie einer Effektordomäne, zusammen. Die Bindedomäne mit dem Pipecolinsäure-Grundgerüst ist für die Wechselwirkungen mit Mip und FKBP12 verantwortlich. Die Effektordomäne hingegen ist der aliphatische Teil der Makrozyklen, der erst durch die Bildung eines ternären Komplexes eine Immunsuppression hervorruft. Somit können Verbindungen vom Pipecolinsäure-Typ keine immunsuppressive Wirkung haben und stellen demnach optimale, neue Leitstrukturen für Mip-Inhibitoren dar. Aus diesem Grund wurden die zwei literaturbekannten, nicht-immunsuppressiven FKBP12-Inhibitoren A und B ausgewählt und in verschiedenen Docking-Studien untersucht. Das Molecular-Modelling zeigte, dass nur Verbindung B reproduzierbare Interaktionen mit Mip eingehen kann und demnach ein potenzieller Inhibitor ist. Um dies zu überprüfen, sollten beide Verbindungen A und B sowie eine Mischform hergestellt werden. Neben diesen Verbindungen wurden weiterhin Variationen an der Struktur vorgenommen. Alle Verbindungen wurden in einem In-vitro-Enzymassay gezielt auf ihre Mip-Interaktion untersucht. Die In-vitro-Untersuchungen zeigten, dass nur Pipecolinsäure-Derivate vom Sulfonsäureamid-Typ B die Mip-PPIase inhibieren, die besten Verbindungen sind 22b, 23a und 24a. Neben den enzymatischen In-vitro-Testungen wurden exemplarisch für die Verbindungen 1a, 12a, 22a und 22b HSQC-NMR-Experimente zur Bestimmung der Inhibitor-Proteinbindung durchgeführt. Für Verbindung 22b wurde zusätzlich die In-vivo-Wachstumshemmung der Legionellen mittels Gentamicin-Infektionsstudien ermittelt. N2 - The present work focused on the synthesis and characterization of potential inhibitors of the surface protein Mip of Legionella pneumophila. The gram-negative microorganism is the causative agent of Legionellosis, which may occur in two different progressive forms, the Pontiac fever, a flu-like respiratory disease, and the Legionnaires disease, a severe pneumonia with mortality rate of up to 30 %. Natural and man-made fresh water systems provide a biological habitat to the bacteria. From this environment they were transmitted into humans via technical vectors such as showers or air conditioners by inhaling the contaminated aerosols. Within the human lung, they affect alveolar macrophages and cause a pulmonary infection. Though, to affect the alveolar macrophages the microorganisms have first to cross the alveolar barrier, which consists of epithelial cells and an extracellular matrix. For this, the surface protein Mip, which represents the main virulence factor of the bacterium, is responsible. Mip forms a stable homodimer, which consists of two domains, a C- and an N-domain. While the N-terminus is responsible for the dimerization of the protein, the C-terminus exhibits the typical folding of a peptidyl-prolyl-cis/trans-isomerase (PPIase). The comparison of the amino acid sequence of the Mip-C-domain and the domain of different human PPIases shows a particularly high homology to FKBP12. This human PPIase belongs to the family of the FK506 binding proteins and plays an important role within the human immune system. Remarkably, known immunosuppressive FKBP12-inhibitors such as FK506 and Rapamycin are also able to inhibit the bacterial Mip. Furthermore, it was observed that the C-terminal Mip-PPIase binds to collagen IV, the main component of the human lung, and therefore, Mip is responsible for the transmigration of Legionella. Due to this fact, Mip-inhibitors should prevent a Legionellosis. To verify this hypothesis, the intention of this work was to develop novel lead structures for Mip-PPIase-inhibitors. By means of molecular modeling studies based on the NMR structure 2VCD N,N-dimethylbenzenesulfonamide was identified as a potential lead structure. Therefore, this compound as well as analogues were aimed to prepare. Although the macrolides FK506 and Rapamycin inhibit Mip, they cannot be used for the treatment of Legionellosis due to their immunosuppressive effects. Compared to N,N-dimethylbenzenesulfonamide the macro cyclic, immunosuppressive drugs consist of two structural domains, a binding domain and an effector domain. The binding domain with the pipecolic acid feature is responsible for the interactions with Mip and FKBP12, respectively, whereas the effector domain, the aliphatic part of the molecule, causes the immunosuppression by forming a ternary complex. Therefore, compounds of the pipecolic acid type cannot affect an immunosuppression and thus, represent optimal, novel lead structures. Due to this fact, the two common, non-immunosuppressive FKBP12-inhibitors A and B were analyzed by means of different docking studies with the result that only compound B is able to interact with Mip. Therefore, it was assumed that B must be a potential Mip-inhibitor. To verify this hypothesis, both compounds A and B as well as a hybrid of them should be prepared. In addition to these compounds, further structural variations were prepared. To determine the interaction with Mip, all synthesized compounds were analyzed by means of an in vitro enzyme assay. During the in vitro studies, it was observed that only pipecolic acid compounds of the sulfonamide type B inhibit the Mip-PPIase, the most promising compounds are 22b, 23a und 24a. To determine the inhibitor-protein binding, compounds 1a, 12a, 22a and 22b were analyzed by means of HSQC-NMR experiments. Furthermore, for compound 22b an in vivo determination of growth inhibition of Legionella by means of a Gentamicin infection assay was carried out. KW - Legionella pneumophila KW - Legionärskrankheit KW - Marcophage-infectivity-potentiator-Protein KW - Pipecolinsäurederivate KW - Macrophage infectivity potentiator Protein KW - Pipecolinsäurederivate KW - Legionelleninfektion KW - Legionella pneumophila KW - Legionnaires' disease KW - Legionella infection KW - macrophage infectivity potentiator protein KW - pipecolic acid derivatives Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72950 ER -