TY - JOUR A1 - Weis, Eva A1 - Schoen, Holger A1 - Victor, Anja A1 - Spix, Claudia A1 - Ludwig, Marco A1 - Schneider-Raetzke, Brigitte A1 - Kohlschmidt, Nicolai A1 - Bartsch, Oliver A1 - Gerhold-Ay, Aslihan A1 - Boehm, Nils A1 - Grus, Franz A1 - Haaf, Thomas A1 - Galetzka, Danuta T1 - Reduced mRNA and Protein Expression of the Genomic Caretaker RAD9A in Primary Fibroblasts of Individuals with Childhood and Independent Second Cancer JF - PLoS ONE N2 - Background: The etiology of secondary cancer in childhood cancer survivors is largely unclear. Exposure of normal somatic cells to radiation and/or chemotherapy can damage DNA and if not all DNA lesions are properly fixed, the mis-repair may lead to pathological consequences. It is plausible to assume that genetic differences, i.e. in the pathways responsible for cell cycle control and DNA repair, play a critical role in the development of secondary cancer. Methodology/Findings: To identify factors that may influence the susceptibility for second cancer formation, we recruited 20 individuals who survived a childhood malignancy and then developed a second cancer as well as 20 carefully matched control individuals with childhood malignancy but without a second cancer. By antibody microarrays, we screened primary fibroblasts of matched patients for differences in the amount of representative DNA repair-associated proteins. We found constitutively decreased levels of RAD9A and several other DNA repair proteins in two-cancer patients, compared to one-cancer patients. The RAD9A protein level increased in response to DNA damage, however to a lesser extent in the two-cancer patients. Quantification of mRNA expression by real-time RT PCR revealed lower RAD9A mRNA levels in both untreated and 1 Gy gamma-irradiated cells of two-cancer patients. Conclusions/Significance: Collectively, our results support the idea that modulation of RAD9A and other cell cycle arrest and DNA repair proteins contribute to the risk of developing a second malignancy in childhood cancer patients. KW - DNA methylation KW - Malignant neoplasms KW - Genes KW - Instability KW - Stability KW - Susceptibility KW - Checkpoints KW - Repair KW - Damage Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141838 VL - 6 IS - 10 ER - TY - JOUR A1 - Weis, Eva A1 - Schoen, Holger A1 - Victor, Anja A1 - Spix, Claudia A1 - Ludwig, Marco A1 - Schneider-Raetzke, Brigitte A1 - Kohlschmidt, Nicolai A1 - Bartsch, Oliver A1 - Gerhold-Ay, Aslihan A1 - Boehm, Nils A1 - Grus, Franz A1 - Haaf, Thomas A1 - Galetzka, Danuta T1 - Reduced mRNA and Protein Expression of the Genomic Caretaker RAD9A in Primary Fibroblasts of Individuals with Childhood and Independent Second Cancer N2 - Background: The etiology of secondary cancer in childhood cancer survivors is largely unclear. Exposure of normal somatic cells to radiation and/or chemotherapy can damage DNA and if not all DNA lesions are properly fixed, the mis-repair may lead to pathological consequences. It is plausible to assume that genetic differences, i.e. in the pathways responsible for cell cycle control and DNA repair, play a critical role in the development of secondary cancer. Methodology/Findings: To identify factors that may influence the susceptibility for second cancer formation, we recruited 20 individuals who survived a childhood malignancy and then developed a second cancer as well as 20 carefully matched control individuals with childhood malignancy but without a second cancer. By antibody microarrays, we screened primary fibroblasts of matched patients for differences in the amount of representative DNA repair-associated proteins. We found constitutively decreased levels of RAD9A and several other DNA repair proteins in two-cancer patients, compared to onecancer patients. The RAD9A protein level increased in response to DNA damage, however to a lesser extent in the twocancer patients. Quantification of mRNA expression by real-time RT PCR revealed lower RAD9A mRNA levels in both untreated and 1 Gy c-irradiated cells of two-cancer patients. Conclusions/Significance: Collectively, our results support the idea that modulation of RAD9A and other cell cycle arrest and DNA repair proteins contribute to the risk of developing a second malignancy in childhood cancer patients. KW - Medizin Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74777 ER -