TY - JOUR A1 - Schneider, Eberhard A1 - El Hajj, Nady A1 - Müller, Fabian A1 - Navarro, Bianca A1 - Haaf, Thomas T1 - Epigenetic Dysregulation in the Prefrontal Cortex of Suicide Completers JF - Cytogenetic and Genome Research N2 - The epigenome is thought to mediate between genes and the environment, particularly in response to adverse life experiences. Similar to other psychiatric diseases, the suicide liability of an individual appears to be influenced by many genetic factors of small effect size as well as by environmental stressors. To identify epigenetic marks associated with suicide, which is considered the endpoint of complex gene-environment interactions, we compared the cortex DNA methylation patterns of 6 suicide completers versus 6 non-psychiatric sudden-death controls, using Illumina 450K methylation arrays. Consistent with a multifactorial disease model, we found DNA methylation changes in a large number of genes, but no changes with large effects reaching genome-wide significance. Global methylation of all analyzed CpG sites was significantly (0.25 percentage point) lower in suicide than in control brains, whereas the vast majority (97%) of the top 1,000 differentially methylated regions (DMRs) were higher methylated (0.6 percentage point) in suicide brains. Annotation analysis of the top 1,000 DMRs revealed an enrichment of differentially methylated promoters in functional categories associated with transcription and expression in the brain. In addition, we performed a comprehensive literature research to identify suicide genes that have been replicated in independent genetic association, brain methylation and/or expression studies. Although, in general, there was no significant overlap between different published data sets or between our top 1,000 DMRs and published data sets, our methylation screen strengthens a number of candidate genes (APLP2, BDNF, HTR1A, NUAK1, PHACTR3, MSMP, SLC6A4, SYN2, and SYNE2) and supports a role for epigenetics in the pathophysiology of suicide. KW - Cortex KW - DNA methylation KW - Suicidal behavior KW - Transcription regulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199032 SN - 1424-8581 SN - 1424-859X VL - 146 IS - 1 ER - TY - JOUR A1 - Poot, Martin A1 - Haaf, Thomas T1 - Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements JF - Molecular Syndromology N2 - Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C(JMJD2C) as a novel candidate gene for mental retardation. KW - triplosufficiency KW - complex chromosome rearrangements KW - DNA double-strand break KW - haploinsufficiency KW - mixed mutation mechanisms KW - structural genome variations Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196524 SN - 1661-8769 SN - 1661-8777 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 6 IS - 3 ER -