TY - JOUR A1 - Haertle, Larissa A1 - Maierhofer, Anna A1 - Böck, Julia A1 - Lehnen, Harald A1 - Böttcher, Yvonne A1 - Blüher, Matthias A1 - Schorsch, Martin A1 - Potabattula, Ramya A1 - El Hajj, Nady A1 - Appenzeller, Silke A1 - Haaf, Thomas T1 - Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals JF - PLoS ONE N2 - Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals. KW - DNA methylation KW - genomic imprinting KW - polymerase chain reaction KW - blood KW - epigenetics KW - sequence alignment KW - sperm Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170433 VL - 12 IS - 8 ER - TY - JOUR A1 - Haertle, Larissa A1 - El Hajj, Nady A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Nanda, Indrajit A1 - Lehnen, Harald A1 - Haaf, Thomas T1 - Epigenetic signatures of gestational diabetes mellitus on cord blood methylation JF - Clinical Epigenetics N2 - Background: Intrauterine exposure to gestational diabetes mellitus (GDM) confers a lifelong increased risk for metabolic and other complex disorders to the offspring. GDM-induced epigenetic modifications modulating gene regulation and persisting into later life are generally assumed to mediate these elevated disease susceptibilities. To identify candidate genes for fetal programming, we compared genome-wide methylation patterns of fetal cord bloods (FCBs) from GDM and control pregnancies. Methods and results: Using Illumina’s 450K methylation arrays and following correction for multiple testing, 65 CpG sites (52 associated with genes) displayed significant methylation differences between GDM and control samples. Four candidate genes, ATP5A1, MFAP4, PRKCH, and SLC17A4, from our methylation screen and one, HIF3A, from the literature were validated by bisulfite pyrosequencing. The effects remained significant after adjustment for the confounding factors maternal BMI, gestational week, and fetal sex in a multivariate regression model. In general, GDM effects on FCB methylation were more pronounced in women with insulin-dependent GDM who had a more severe metabolic phenotype than women with dietetically treated GDM. Conclusions: Our study supports an association between maternal GDM and the epigenetic status of the exposed offspring. Consistent with a multifactorial disease model, the observed FCB methylation changes are of small effect size but affect multiple genes/loci. The identified genes are primary candidates for transmitting GDM effects to the next generation. They also may provide useful biomarkers for the diagnosis, prognosis, and treatment of adverse prenatal exposures. KW - fetal programming KW - insulin treatment KW - DNA methylation KW - fetal cord blood KW - gestational diabetes mellitus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159459 VL - 9 IS - 28 ER - TY - JOUR A1 - Vona, Barbara A1 - Nanda, Indrajit A1 - Shehata-Dieler, Wafaa A1 - Haaf, Thomas T1 - Genetics of Tinnitus: Still in its Infancy JF - Frontiers in Neuroscience N2 - Tinnitus is the perception of a phantom sound that affects between 10 and 15% of the general population. Despite this considerable prevalence, treatments for tinnitus are presently lacking. Tinnitus exhibits a diverse array of recognized risk factors and extreme clinical heterogeneity. Furthermore, it can involve an unknown number of auditory and non-auditory networks and molecular pathways. This complex combination has hampered advancements in the field. The identification of specific genetic factors has been at the forefront of several research investigations in the past decade. Nine studies have examined genes in a case-control association approach. Recently, a genome-wide association study has highlighted several potentially significant pathways that are implicated in tinnitus. Two twin studies have calculated a moderate heritability for tinnitus and disclosed a greater concordance rate in monozygotic twins compared to dizygotic twins. Despite the more recent data alluding to genetic factors in tinnitus, a strong association with any specific genetic locus is lacking and a genetic study with sufficient statistical power has yet to be designed. Future research endeavors must overcome the many inherent limitations in previous study designs. This review summarizes the previously embarked upon tinnitus genetic investigations and summarizes the hurdles that have been encountered. The identification of candidate genes responsible for tinnitus may afford gene based diagnostic approaches, effective therapy development, and personalized therapeutic intervention. KW - twin study KW - complex disorders KW - genetics KW - genetic heterogeneity KW - genome-wide association study (GWAS) KW - hearing loss KW - tinnitus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170926 VL - 11 IS - 236 ER - TY - JOUR A1 - Maierhofer, Anna A1 - Flunkert, Julia A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Schindler, Detlev A1 - Nanda, Indrajit A1 - Haaf, Thomas T1 - Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation JF - PLoS ONE N2 - Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorometric assays were consistent with slightly reduced global DNA methylation and hydroxymethylation, however the observed between-group differences were usually not significant. Similarly, bisulfite pyrosequencing of interspersed LINE-1 repeats and centromeric α-satellite DNA did not detect significant methylation differences between irradiated and non-irradiated cultures. Methylation of interspersed ALU repeats appeared to be slightly increased (one percentage point; p = 0.01) at 6 h after irradiation with 4 Gy. Single-cell analysis showed comparable variations in repeat methylation among individual cells in both irradiated and control cultures. Radiation-induced changes in global repeat methylation, if any, were much smaller than methylation variation between different fibroblast strains. Interestingly, α-satellite DNA methylation positively correlated with gestational age. Finally, 450K methylation arrays mainly targeting genes and CpG islands were used for global DNA methylation analysis. There were no detectable methylation differences in genic (promoter, 5' UTR, first exon, gene body, 3' UTR) and intergenic regions between irradiated and control fibroblast cultures. Although we cannot exclude minor effects, i.e. on individual CpG sites, collectively our data suggest that global DNA methylation remains rather stable in irradiated normal body cells in the early phase of DNA damage response. KW - DNA methylation KW - fibroblasts KW - methylation KW - alu elements KW - DNA damage KW - epigenetics KW - cancer treatment Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170895 VL - 12 IS - 5 ER -