TY - JOUR A1 - Zinner, Christoph A1 - Morales-Alamo, David A1 - Ørtenblad, Niels A1 - Larsen, Filip J. A1 - Schiffer, Tomas A. A1 - Willis, Sarah J. A1 - Gelabert-Rebato, Miriam A1 - Perez-Valera, Mario A1 - Boushel, Robert A1 - Calbet, Jose A. L. A1 - Holmberg, Hans-Christer T1 - The Physiological Mechanisms of Performance Enhancement with Sprint Interval Training Differ between the Upper and Lower Extremities in Humans JF - Frontiers in Physiology N2 - To elucidate the mechanisms underlying the differences in adaptation of arm and leg muscles to sprint training, over a period of 11 days 16 untrained men performed six sessions of 4–6 × 30-s all-out sprints (SIT) with the legs and arms, separately, with a 1-h interval of recovery. Limb-specific VO2peak, sprint performance (two 30-s Wingate tests with 4-min recovery), muscle efficiency and time-trial performance (TT, 5-min all-out) were assessed and biopsies from the m. vastus lateralis and m. triceps brachii taken before and after training. VO2peak and Wmax increased 3–11% after training, with a more pronounced change in the arms (P < 0.05). Gross efficiency improved for the arms (+8.8%, P < 0.05), but not the legs (−0.6%). Wingate peak and mean power outputs improved similarly for the arms and legs, as did TT performance. After training, VO2 during the two Wingate tests was increased by 52 and 6% for the arms and legs, respectively (P < 0.001). In the case of the arms, VO2 was higher during the first than second Wingate test (64 vs. 44%, P < 0.05). During the TT, relative exercise intensity, HR, VO2, VCO2, VE, and Vt were all lower during arm-cranking than leg-pedaling, and oxidation of fat was minimal, remaining so after training. Despite the higher relative intensity, fat oxidation was 70% greater during leg-pedaling (P = 0.017). The aerobic energy contribution in the legs was larger than for the arms during the Wingate tests, although VO2 for the arms was enhanced more by training, reducing the O2 deficit after SIT. The levels of muscle glycogen, as well as the myosin heavy chain composition were unchanged in both cases, while the activities of 3-hydroxyacyl-CoA-dehydrogenase and citrate synthase were elevated only in the legs and capillarization enhanced in both limbs. Multiple regression analysis demonstrated that the variables that predict TT performance differ for the arms and legs. The primary mechanism of adaptation to SIT by both the arms and legs is enhancement of aerobic energy production. However, with their higher proportion of fast muscle fibers, the arms exhibit greater plasticity. KW - high-intensity training KW - lower body KW - performance KW - triceps brachii KW - upper body Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165257 VL - 7 IS - 426 ER - TY - JOUR A1 - Düking, Peter A1 - Hotho, Andreas A1 - Holmberg, Hans-Christer A1 - Fuss, Franz Konstantin A1 - Sperlich, Billy T1 - Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies JF - Frontiers in Physiology N2 - Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables) provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athlete's training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health. KW - sports technology KW - wearable technologies KW - performance parameters KW - health monitoring KW - performance monitoring Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165516 VL - 7 IS - 71 ER -