TY - JOUR A1 - Gorlova, Anna A1 - Svirin, Evgeniy A1 - Pavlov, Dmitrii A1 - Cespuglio, Raymond A1 - Proshin, Andrey A1 - Schroeter, Careen A. A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Understanding the role of oxidative stress, neuroinflammation and abnormal myelination in excessive aggression associated with depression: recent input from mechanistic studies JF - International Journal of Molecular Sciences N2 - Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions. KW - major depressive disorder (MDD) KW - aggression KW - neuroinflammation KW - oxidative stress KW - insulin receptor KW - myelination Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304917 SN - 1422-0067 VL - 24 IS - 2 ER - TY - JOUR A1 - Strekalova, Tatyana A1 - Pavlov, Dmitrii A1 - Trofimov, Alexander A1 - Anthony, Daniel C. A1 - Svistunov, Andrei A1 - Proshin, Andrey A1 - Umriukhin, Aleksei A1 - Lyundup, Alexei A1 - Lesch, Klaus-Peter A1 - Cespuglio, Raymond T1 - Hippocampal over-expression of cyclooxygenase-2 (COX-2) is associated with susceptibility to stress-induced anhedonia in mice JF - International Journal of Molecular Sciences N2 - The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram. KW - major depression KW - inducible cyclooxygenase-2 (COX-2) KW - hippocampus KW - anhedonia KW - chronic stress KW - stress resilience KW - fear conditioning KW - celecoxib KW - citalopram KW - mouse Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284056 SN - 1422-0067 VL - 23 IS - 4 ER - TY - JOUR A1 - Fernàndez-Castillo, Noèlia A1 - Cabana-Domínguez, Judit A1 - Kappel, Djenifer B. A1 - Torrico, Bàrbara A1 - Weber, Heike A1 - Lesch, Klaus-Peter A1 - Lao, Oscar A1 - Reif, Andreas A1 - Cormand, Bru T1 - Exploring the contribution to ADHD of genes involved in Mendelian disorders presenting with hyperactivity and/or inattention JF - Genes N2 - Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders. KW - ADHD KW - rare mendelian disorders KW - genetic variants Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252346 SN - 2073-4425 VL - 13 IS - 1 ER - TY - JOUR A1 - Strekalova, Tatyana A1 - Veniaminova, Ekaterina A1 - Svirin, Evgeniy A1 - Kopeikina, Ekaterina A1 - Veremeyko, Tatyana A1 - Yung, Amanda W. Y. A1 - Proshin, Andrey A1 - Tan, Shawn Zheng Kai A1 - Khairuddin, Sharafuddin A1 - Lim, Lee Wei A1 - Lesch, Klaus-Peter A1 - Walitza, Susanne A1 - Anthony, Daniel C. A1 - Ponomarev, Eugene D. T1 - Sex-specific ADHD-like behaviour, altered metabolic functions, and altered EEG activity in sialyltransferase ST3GAL5-deficient mice JF - Biomolecules N2 - A deficiency in GM3-derived gangliosides, resulting from a lack of lactosylceramide-alpha-2,3-sialyltransferase (ST3GAL5), leads to severe neuropathology, including epilepsy and metabolic abnormalities. Disruption of ganglioside production by this enzyme may also have a role in the development of neuropsychiatric disorders. ST3Gal5 knock-out (St3gal5\(^{−/−}\)) mice lack a-, b-, and c-series gangliosides, but exhibit no overt neuropathology, possibly owing to the production of compensatory 0-series glycosphingolipids. Here, we sought to investigate the possibility that St3gal5\(^{−/−}\) mice might exhibit attention-deficit/hyperactivity disorder (ADHD)-like behaviours. In addition, we evaluated potential metabolic and electroencephalogram (EEG) abnormalities. St3gal5\(^{−/−}\) mice were subjected to behavioural testing, glucose tolerance tests, and the levels of expression of brain and peripheral A and B isoforms of the insulin receptor (IR) were measured. We found that St3gal5\(^{−/−}\) mice exhibit locomotor hyperactivity, impulsivity, neophobia, and anxiety-like behavior. The genotype also altered blood glucose levels and glucose tolerance. A sex bias was consistently found in relation to body mass and peripheral IR expression. Analysis of the EEG revealed an increase in amplitude in St3gal5\(^{−/−}\) mice. Together, St3gal5\(^{−/−}\) mice exhibit ADHD-like behaviours, altered metabolic and EEG measures providing a useful platform for better understanding of the contribution of brain gangliosides to ADHD and associated comorbidities. KW - lactosylceramide alpha-2,3-sialyltransferase (ST3GAL5) KW - attention-deficit/hyperactivity disorder (ADHD) KW - insulin receptor (IR) KW - sex differences KW - electroencephalogram (EEG) KW - mice Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250071 SN - 2218-273X VL - 11 IS - 12 ER - TY - JOUR A1 - Schapovalova, Olesia A1 - Gorlova, Anna A1 - de Munter, Johannes A1 - Sheveleva, Elisaveta A1 - Eropkin, Mikhail A1 - Gorbunov, Nikita A1 - Sicker, Michail A1 - Umriukhin, Aleksei A1 - Lyubchyk, Sergiy A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana A1 - Schroeter, Careen A. T1 - Immunomodulatory effects of new phytotherapy on human macrophages and TLR4- and TLR7/8-mediated viral-like inflammation in mice JF - Frontiers in Medicine N2 - Background While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for “sickness” behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions Herbal IP-therapy decreases inflammation and, partly, “sickness behavior,” suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects. KW - toll-like receptors KW - SARS-CoV-2 KW - inflammation KW - pro-inflammatory cytokines KW - mice Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286301 SN - 2296-858X VL - 9 ER - TY - JOUR A1 - Svirin, Evgeniy A1 - Veniaminova, Ekaterina A1 - Costa-Nunes, João Pedro A1 - Gorlova, Anna A1 - Umriukhin, Aleksei A1 - Kalueff, Allan V. A1 - Proshin, Andrey A1 - Anthony, Daniel C. A1 - Nedorubov, Andrey A1 - Tse, Anna Chung Kwan A1 - Walitza, Susanne A1 - Lim, Lee Wei A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Predation stress causes excessive aggression in female mice with partial genetic inactivation of tryptophan hydroxylase-2: evidence for altered myelination-related processes JF - Cells N2 - The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2\(^{−/−}\)) mice. In heterozygous male mice (Tph2\(^{+/−}\)), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2\(^{+/−}\) mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2\(^{+/−}\) females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2\(^{+/−}\) mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior. KW - tryptophan hydroxylase-2 (Tph2) KW - female aggression KW - 5-HT receptors KW - glycogen synthase kinase-3 β (GSK-3β) KW - myelination KW - predation stress Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267250 SN - 2073-4409 VL - 11 IS - 6 ER - TY - JOUR A1 - Jansch, Charline A1 - Ziegler, Georg C. A1 - Forero, Andrea A1 - Gredy, Sina A1 - Wäldchen, Sina A1 - Vitale, Maria Rosaria A1 - Svirin, Evgeniy A1 - Zöller, Johanna E. M. A1 - Waider, Jonas A1 - Günther, Katharina A1 - Edenhofer, Frank A1 - Sauer, Markus A1 - Wischmeyer, Erhard A1 - Lesch, Klaus-Peter T1 - Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly JF - Journal of Neural Transmission N2 - Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders. KW - neuropsychiatric disorders KW - human induced pluripotent stem cell (hiPSC) KW - serotonin-specific neurons KW - median and dorsal raphe KW - synapse formation KW - Cadherin-13 (CDH13) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268519 SN - 1435-1463 VL - 128 IS - 2 ER - TY - JOUR A1 - Lüffe, Teresa M. A1 - D'Orazio, Andrea A1 - Bauer, Moritz A1 - Gioga, Zoi A1 - Schoeffler, Victoria A1 - Lesch, Klaus-Peter A1 - Romanos, Marcel A1 - Drepper, Carsten A1 - Lillesaar, Christina T1 - Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish – implications for neurodevelopmental disorders JF - Translational Psychiatry N2 - Recent advances in the genetics of neurodevelopmental disorders (NDDs) have identified the transcription factor FOXP2 as one of numerous risk genes, e.g. in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). FOXP2 function is suggested to be involved in GABAergic signalling and numerous studies demonstrate that GABAergic function is altered in NDDs, thus disrupting the excitation/inhibition balance. Interestingly, GABAergic signalling components, including glutamate-decarboxylase 1 (Gad1) and GABA receptors, are putative transcriptional targets of FOXP2. However, the specific role of FOXP2 in the pathomechanism of NDDs remains elusive. Here we test the hypothesis that Foxp2 affects behavioural dimensions via GABAergic signalling using zebrafish as model organism. We demonstrate that foxp2 is expressed by a subset of GABAergic neurons located in brain regions involved in motor functions, including the subpallium, posterior tuberculum, thalamus and medulla oblongata. Using CRISPR/Cas9 gene-editing we generated a novel foxp2 zebrafish loss-of-function mutant that exhibits increased locomotor activity. Further, genetic and/or pharmacological disruption of Gad1 or GABA-A receptors causes increased locomotor activity, resembling the phenotype of foxp2 mutants. Application of muscimol, a GABA-A receptor agonist, rescues the hyperactive phenotype induced by the foxp2 loss-of-function. By reverse translation of the therapeutic effect on hyperactive behaviour exerted by methylphenidate, we note that application of methylphenidate evokes different responses in wildtype compared to foxp2 or gad1b loss-of-function animals. Together, our findings support the hypothesis that foxp2 regulates locomotor activity via GABAergic signalling. This provides one targetable mechanism, which may contribute to behavioural phenotypes commonly observed in NDDs. KW - comparative genomics KW - molecular neuroscience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264713 VL - 11 ER - TY - JOUR A1 - Ziegler, Georg C. A1 - Radtke, Franziska A1 - Vitale, Maria Rosaria A1 - Preuße, André A1 - Klopocki, Eva A1 - Herms, Stefan A1 - Lesch, Klaus-Peter T1 - Generation of multiple human iPSC lines from peripheral blood mononuclear cells of two SLC2A3 deletion and two SLC2A3 duplication carriers JF - Stem Cell Research N2 - Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries. KW - congenital heart-deffects KW - transporter gene SLC2A3 KW - copy-number variation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264696 VL - 56 ER - TY - JOUR A1 - Vitale, Maria Rosaria A1 - Zöller, Johanna Eva Maria A1 - Jansch, Charline A1 - Janz, Anna A1 - Edenhofer, Frank A1 - Klopocki, Eva A1 - van den Hove, Daniel A1 - Vanmierlo, Tim A1 - Rivero, Olga A1 - Kasri, Nael Nadif A1 - Ziegler, Georg Christoph A1 - Lesch, Klaus-Peter T1 - Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9 JF - Stem Cell Research N2 - Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13\(^{+/-}\)) and a CDH13 null mutant (CDH13\(^{-/-}\)) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype. KW - CRISPR-Cas Systems KW - cadherins KW - female KW - heterozygote KW - humans KW - Induced Pluripotent Stem Cells KW - middle aged KW - neurodevelopmental disorders / genetics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260331 VL - 51 ER -