TY - JOUR A1 - Janzen, Dieter A1 - Bakirci, Ezgi A1 - Wieland, Annalena A1 - Martin, Corinna A1 - Dalton, Paul D. A1 - Villmann, Carmen T1 - Cortical Neurons form a Functional Neuronal Network in a 3D Printed Reinforced Matrix JF - Advanced Healthcare Materials N2 - Impairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber‐reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforced with scaffolds created by melt electrowriting, improving its mechanical properties and facilitating the handling. Cortical neurons display enhance cell viability and the neuronal network maturation in 3D, estimated by staining of dendrites and synapses over 21 days in vitro, is faster in 3D compared to 2D cultures. Using functional readouts with electrophysiological recordings, different firing patterns of action potentials are observed, which are absent in the presence of the sodium channel blocker, tetrodotoxin. Voltage‐gated sodium currents display a current–voltage relationship with a maximum peak current at −25 mV. With its high customizability in terms of scaffold reinforcement and soft matrix formulation, this approach represents a new tool to study neuronal networks in 3D under normal and, potentially, disease conditions. KW - 3D electrophysiology KW - 3D neuronal networks KW - cortical neurons KW - melt electrowriting Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215400 VL - 9 IS - 9 ER - TY - JOUR A1 - Oehler, Beatrice A1 - Kistner, Katrin A1 - Martin, Corinna A1 - Schiller, Jürgen A1 - Mayer, Rafaela A1 - Mohammadi, Milad A1 - Sauer, Reine-Solange A1 - Filipovic, Milos R. A1 - Nieto, Francisco R. A1 - Kloka, Jan A1 - Pflücke, Diana A1 - Hill, Kerstin A1 - Schaefer, Michael A1 - Malcangio, Marzia A1 - Reeh, Peter W. A1 - Brack, Alexander A1 - Blum, Robert A1 - Rittner, Heike L. T1 - Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation JF - Scientific Reports N2 - Phospholipids occurring in cell membranes and lipoproteins are converted into oxidized phospholipids (OxPL) by oxidative stress promoting atherosclerotic plaque formation. Here, OxPL were characterized as novel targets in acute and chronic inflammatory pain. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) and its derivatives were identified in inflamed tissue by mass spectrometry and binding assays. They elicited calcium influx, hyperalgesia and induced pro-nociceptive peptide release. Genetic, pharmacological and mass spectrometric evidence in vivo as well as in vitro confirmed the role of transient receptor potential channels (TRPA1 and TRPV1) as OxPAPC targets. Treatment with the monoclonal antibody E06 or with apolipoprotein A-I mimetic peptide D-4F, capturing OxPAPC in atherosclerosis, prevented inflammatory hyperalgesia, and in vitro TRPA1 activation. Administration of D-4F or E06 to rats profoundly ameliorated mechanical hyperalgesia and inflammation in collagen-induced arthritis. These data reveal a clinically relevant role for OxPAPC in inflammation offering therapy for acute and chronic inflammatory pain treatment by scavenging OxPAPC. KW - chronic pain KW - ion channels in the nervous system KW - molecular medicine KW - pain Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158536 VL - 7 IS - 5447 ER -