TY - JOUR A1 - Hopfner, Franziska A1 - Schormair, Barbara A1 - Knauf, Franziska A1 - Berthele, Achim A1 - Tölle, Thomas R. A1 - Baron, Ralf A1 - Maier, Christoph A1 - Treede, Rolf-Detlef A1 - Binder, Andreas A1 - Sommer, Claudia A1 - Maihöfner, Christian A1 - Kunz, Wolfram A1 - Zimprich, Friedrich A1 - Heemann, Uwe A1 - Pfeufer, Arne A1 - Näbauer, Michael A1 - Kääb, Stefan A1 - Nowak, Barbara A1 - Gieger, Christian A1 - Lichtner, Peter A1 - Trenkwalder, Claudia A1 - Oexle, Konrad A1 - Winkelmann, Juliane T1 - Novel SCARB2 mutation in Action Myoclonus-Renal Failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features JF - BMC Neurology N2 - Background: Action myoclonus-renal failure syndrome is a hereditary form of progressive myoclonus epilepsy associated with renal failure. It is considered to be an autosomal-recessive disease related to loss-of-function mutations in SCARB2. We studied a German AMRF family, additionally showing signs of demyelinating polyneuropathy and dilated cardiomyopathy. To test the hypothesis whether isolated appearance of individual AMRF syndrome features could be related to heterozygote SCARB2 mutations, we screened for SCARB2 mutations in unrelated patients showing isolated AMRF features. Methods: In the AMRF family all exons of SCARB2 were analyzed by Sanger sequencing. The mutation screening of unrelated patients with isolated AMRF features affected by either epilepsy (n = 103, progressive myoclonus epilepsy or generalized epilepsy), demyelinating polyneuropathy (n = 103), renal failure (n = 192) or dilated cardiomyopathy (n = 85) was performed as high resolution melting curve analysis of the SCARB2 exons. Results: A novel homozygous 1 bp deletion (c.111delC) in SCARB2 was found by sequencing three affected homozygous siblings of the affected family. A heterozygous sister showed generalized seizures and reduction of nerve conduction velocity in her legs. No mutations were found in the epilepsy, renal failure or dilated cardiomyopathy samples. In the polyneuropathy sample two individuals with demyelinating disease were found to be carriers of a SCARB2 frameshift mutation (c.666delCCTTA). Conclusions: Our findings indicate that demyelinating polyneuropathy and dilated cardiomyopathy are part of the action myoclonus-renal failure syndrome. Moreover, they raise the possibility that in rare cases heterozygous SCARB2 mutations may be associated with PNP features. KW - Demyelinating peripheral neuropathy KW - Beta-glucocerebrosidase KW - Epilepsy KW - LIMP-2 KW - Mice Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141209 VL - 11 IS - 134 ER - TY - JOUR A1 - Farag, Heba Gamal A1 - Froehler, Sebastian A1 - Oexle, Konrad A1 - Ravindran, Ethiraj A1 - Schindler, Detlev A1 - Staab, Timo A1 - Huebner, Angela A1 - Kraemer, Nadine A1 - Chen, Wei A1 - Kaindl, Angela M. T1 - Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation JF - Orphanet Journal of Rare Diseases N2 - Background: Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disease with severe microcephaly at birth due to a pronounced reduction in brain volume and intellectual disability. Biallelic mutations in the WD repeat-containing protein 62 gene WDR62 are the genetic cause of MCPH2. However, the exact underlying pathomechanism of MCPH2 remains to be clarified. Methods/results: We characterized the clinical, radiological, and cellular features that add to the human MCPH2 phenotype. Exome sequencing followed by Sanger sequencing in a German family with two affected daughters with primary microcephaly revealed in the index patient the compound heterozygous mutations c. 1313G>A (p.R438H) / c.2864-2867delACAG (p.D955Afs*112) of WDR62, the second of which is novel. Radiological examination displayed small frontal lobes, corpus callosum hypoplasia, simplified hippocampal gyration, and cerebellar hypoplasia. We investigated the cellular phenotype in patient-derived lymphoblastoid cells and compared it with that of healthy female controls. WDR62 expression in the patient's immortalized lymphocytes was deranged, and mitotic spindle defects as well as abnormal centrosomal protein localization were apparent. Conclusion: We propose that a disruption of centrosome integrity and/or spindle organization may play an important role in the development of microcephaly in MCPH2. KW - cell division KW - intellectual disability KW - missense mutations KW - protein KW - malformations KW - establishment KW - cytokinesis KW - genome KW - midbody KW - database KW - maintenance KW - families KW - microcephaly KW - WDR62 mutation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123505 SN - 1750-1172 VL - 8 IS - 178 ER -