TY - JOUR A1 - Cerna-Velazco, Nhell A1 - Faber, Thomas A1 - Jones-Pérez, Joel A1 - Porod, Werner T1 - Constraining sleptons at the LHC in a supersymmetric low-scale seesaw scenario JF - European Physical Journal C N2 - We consider a scenario inspired by natural supersymmetry, where neutrino data is explained within a low-scale seesaw scenario. We extend the Minimal Supersymmetric Standard Model by adding light right-handed neutrinos and their superpartners, the R-sneutrinos, and consider the lightest neutralinos to be higgsino-like. We consider the possibilities of having either an R-sneutrino or a higgsino as lightest supersymmetric particle. Assuming that squarks and gauginos are heavy, we systematically evaluate the bounds on slepton masses due to existing LHC data. KW - physics KW - particle physics KW - neutrino KW - R-sneutrino KW - supersymmetry (SUSY) KW - supersymmetric model KW - standard seesaw KW - inverse seesaw KW - minimal supersymmetric standard model (MSSM) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173809 VL - 77 ER - TY - JOUR A1 - Morais, António P. A1 - Pasechnik, Roman A1 - Porod, Werner T1 - Grand Unified origin of gauge interactions and families replication in the Standard Model JF - Universe N2 - The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distinctive properties of the SM dynamically emerge from a unified New Physics framework tying together both flavor physics and Grand Unified Theory (GUT) concepts. This framework is suggested by a novel anomaly-free supersymmetric chiral E\(_6\)×SU(2)\(_F\)×U(1)\(_F\) GUT containing the SM. Among the most appealing emergent properties of this theory is the Higgs-matter unification with a highly-constrained massless chiral sector featuring two universal Yukawa couplings close to the GUT scale. At the electroweak scale, the minimal SM-like effective field theory limit of this GUT represents a specific flavored three-Higgs doublet model consistent with the observed large hierarchies in the quark mass spectra and mixing already at tree level. KW - grand unified theories KW - supersymmetry KW - phenomenology of New Physics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250237 SN - 2218-1997 VL - 7 IS - 12 ER - TY - JOUR A1 - Hirsch, Martin A1 - Krauss, Manuel E. A1 - Opferkuch, Toby A1 - Porod, Werner A1 - Staub, Florian T1 - A constrained supersymmetric left-right model JF - JOURNAL OF HIGH ENERGY PHYSICS N2 - We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC. KW - supersymmetry KW - phenomenology KW - LHC Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168016 VL - 03 IS - 009 ER - TY - JOUR A1 - Bechtle, Philip A1 - Camargo-Molina, José Eliel A1 - Desch, Klaus A1 - Dreiner, Herbert K. A1 - Hamer, Matthias A1 - Krämer, Michael A1 - O'Leary, Ben A1 - Porod, Werner A1 - Sarrazin, Björn A1 - Stefaniak, Tim A1 - Uhlenbrock, Mathias A1 - Wienemann, Peter T1 - Killing the cMSSM softly JF - The European Physical Journal C N2 - We investigate the constrained Minimal Supersymmetric Standard Model (cMSSM) in the light of constraining experimental and observational data from precision measurements, astrophysics, direct supersymmetry searches at the LHC and measurements of the properties of the Higgs boson, by means of a global fit using the program Fittino. As in previous studies, we find rather poor agreement of the best fit point with the global data. We also investigate the stability of the electro-weak vacuum in the preferred region of parameter space around the best fit point. We find that the vacuum is metastable, with a lifetime significantly longer than the age of the Universe. For the first time in a global fit of supersymmetry, we employ a consistent methodology to evaluate the goodness-of-fit of the cMSSM in a frequentist approach by deriving p values from large sets of toy experiments. We analyse analytically and quantitatively the impact of the choice of the observable set on the p value, and in particular its dilution when confronting the model with a large number of barely constraining measurements. Finally, for the preferred sets of observables, we obtain p values for the cMSSM below 10 %, i.e. we exclude the cMSSM as a model at the 90 % confidence level. KW - Dark Matter KW - Higgs Boson KW - Higgs Mass KW - Supersymmetry Breaking KW - Light Supersymmetric Particle Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165045 VL - 76 IS - 96 ER - TY - JOUR A1 - Bechtle, Philip A1 - Bringmann, Torsten A1 - Desch, Klaus A1 - Dreiner, Herbi A1 - Hamer, Matthias A1 - Hensel, Carsten A1 - Krämer, Michael A1 - Nguyen, Nelly A1 - Porod, Werner A1 - Prudent, Xavier A1 - Sarrazin, Björn A1 - Uhlenbrock, Mathias A1 - Wienemann, Peter T1 - Constrained supersymmetry after two years of LHC data: a global view with Fittino JF - Journal of High Energy Physics N2 - We perform global fits to the parameters of the Constrained Minimal Super-symmetric Standard Model (CMSSM) and to a variant with non-universal Higgs masses (NUHM1). In addition to constraints from low-energy precision observables and the cosmological dark matter density, we take into account the LHC exclusions from searches in jets plus missing transverse energy signatures with about 5 fb\(^{−1}\) of integrated luminosity. We also include the most recent upper bound on the branching ratio B\(_s\)  → μμ from LHCb. Furthermore, constraints from and implications for direct and indirect dark matter searches are discussed. The best fit of the CMSSM prefers a light Higgs boson just above the experimentally excluded mass. We find that the description of the low-energy observables, (g − 2)\(_μ\) in particular, and the non-observation of SUSY at the LHC become more and more incompatible within the CMSSM. A potential SM-like Higgs boson with mass around 126 GeV can barely be accommodated. Values for B(B\(_s\)→μμ) just around the Standard Model prediction are naturally expected in the best fit region. The most-preferred region is not yet affected by limits on direct WIMP searches, but the next generation of experiments will probe this region. Finally, we discuss implications from fine-tuning for the best fit regions. KW - supersymmetry phenomenology Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129573 VL - 06 IS - 098 ER -