TY - JOUR A1 - Kuenzer, Claudia A1 - Klein, Igor A1 - Ullmann, Tobias A1 - Georgiou, Efi Foufoula A1 - Baumhauer, Roland A1 - Dech, Stefan T1 - Remote Sensing of River Delta Inundation: Exploiting the Potential of Coarse Spatial Resolution, Temporally-Dense MODIS Time Series JF - Remote Sensing N2 - River deltas belong to the most densely settled places on earth. Although they only account for 5% of the global land surface, over 550 million people live in deltas. These preferred livelihood locations, which feature flat terrain, fertile alluvial soils, access to fluvial and marine resources, a rich wetland biodiversity and other advantages are, however, threatened by numerous internal and external processes. Socio-economic development, urbanization, climate change induced sea level rise, as well as flood pulse changes due to upstream water diversion all lead to changes in these highly dynamic systems. A thorough understanding of a river delta's general setting and intra-annual as well as long-term dynamic is therefore crucial for an informed management of natural resources. Here, remote sensing can play a key role in analyzing and monitoring these vast areas at a global scale. The goal of this study is to demonstrate the potential of intra-annual time series analyses at dense temporal, but coarse spatial resolution for inundation characterization in five river deltas located in four different countries. Based on 250 m MODIS reflectance data we analyze inundation dynamics in four densely populated Asian river deltas-namely the Yellow River Delta (China), the Mekong Delta (Vietnam), the Irrawaddy Delta (Myanmar), and the Ganges-Brahmaputra (Bangladesh, India)-as well as one very contrasting delta: the nearly uninhabited polar Mackenzie Delta Region in northwestern Canada for the complete time span of one year (2013). A complex processing chain of water surface derivation on a daily basis allows the generation of intra-annual time series, which indicate inundation duration in each of the deltas. Our analyses depict distinct inundation patterns within each of the deltas, which can be attributed to processes such as overland flooding, irrigation agriculture, aquaculture, or snowmelt and thermokarst processes. Clear differences between mid-latitude, subtropical, and polar deltas are illustrated, and the advantages and limitations of the approach for inundation derivation are discussed. KW - difference water index KW - ENVISAT ASAR WSM KW - TerraSAR-X KW - central asia KW - SAR imagery KW - synthetic aperture radar KW - mekong delta KW - mangrove ecosystems KW - flood detection KW - dynamics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151552 VL - 7 SP - 8516 EP - 8542 ER - TY - JOUR A1 - Nguyen, Duy Ba A1 - Kersten, Clauss A1 - Senmao, Cao A1 - Vahid, Naeimi A1 - Kuenzer, Claudia A1 - Wagner, Wolfgang T1 - Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data JF - Remote Sensing N2 - Rice is the most important food crop in Asia, and the timely mapping and monitoring of paddy rice fields subsequently emerged as an important task in the context of food security and modelling of greenhouse gas emissions. Rice growth has a distinct influence on Synthetic Aperture Radar (SAR) backscatter images, and time-series analysis of C-band images has been successfully employed to map rice fields. The poor data availability on regional scales is a major drawback of this method. We devised an approach to classify paddy rice with the use of all available Envisat ASAR WSM (Advanced Synthetic Aperture Radar Wide Swath Mode) data for our study area, the Mekong Delta in Vietnam. We used regression-based incidence angle normalization and temporal averaging to combine acquisitions from multiple tracks and years. A crop phenology-based classifier has been applied to this time series to detect single-, double- and triple-cropped rice areas (one to three harvests per year), as well as dates and lengths of growing seasons. Our classification has an overall accuracy of 85.3% and a kappa coefficient of 0.74 compared to a reference dataset and correlates highly with official rice area statistics at the provincial level (R-2 of 0.98). SAR-based time-series analysis allows accurate mapping and monitoring of rice areas even under adverse atmospheric conditions. KW - band SAR data KW - SAR KW - rice KW - WSM KW - ASAR KW - Envisat KW - MODIS image KW - Southeast China KW - polarimetric SAR KW - cropping systems KW - time-series KW - paddy rice KW - radar KW - paddy KW - rice mapping KW - Vietnam KW - Mekong-Delta KW - synthetic aperture radar KW - multitemporal ALOS/PALSAR imagery KW - soil moisture retrieval Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137554 VL - 7 IS - 12 ER - TY - JOUR A1 - Naeimi, Vahid A1 - Leinenkugel, Patrick A1 - Sabel, Daniel A1 - Wagner, Wolfgang A1 - Apel, Heiko A1 - Kuenzer, Claudia T1 - Evaluation of Soil Moisture Retrieval from the ERS and Metop Scatterometers in the Lower Mekong Basin JF - Remote Sensing N2 - The natural environment and livelihoods in the Lower Mekong Basin (LMB) are significantly affected by the annual hydrological cycle. Monitoring of soil moisture as a key variable in the hydrological cycle is of great interest in a number of Hydrological and agricultural applications. In this study we evaluated the quality and spatiotemporal variability of the soil moisture product retrieved from C-band scatterometers data across the LMB sub-catchments. The soil moisture retrieval algorithm showed reasonable performance in most areas of the LMB with the exception of a few sub-catchments in the eastern parts of Laos, where the land cover is characterized by dense vegetation. The best performance of the retrieval algorithm was obtained in agricultural regions. Comparison of the available in situ evaporation data in the LMB and the Basin Water Index (BWI), an indicator of the basin soil moisture condition, showed significant negative correlations up to R = −0.85. The inter-annual variation of the calculated BWI was also found corresponding to the reported extreme hydro-meteorological events in the Mekong region. The retrieved soil moisture data show high correlation (up to R = 0.92) with monthly anomalies of precipitation in non-irrigated regions. In general, the seasonal variability of soil moisture in the LMB was well captured by the retrieval method. The results of analysis also showed significant correlation between El Niño events and the monthly BWI anomaly measurements particularly for the month May with the maximum correlation of R = 0.88. KW - soil moisture KW - scatterometer KW - ASCAT KW - Mekong Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130480 VL - 5 IS - 4 ER - TY - JOUR A1 - Dietz, Andreas J. A1 - Conrad, Christopher A1 - Kuenzer, Claudia A1 - Gesell, Gerhard A1 - Dech, Stefan T1 - Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data JF - Remote Sensing N2 - Central Asia consists of the five former Soviet States Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, therefore comprising an area of similar to 4 Mio km(2). The continental climate is characterized by hot and dry summer months and cold winter seasons with most precipitation occurring as snowfall. Accordingly, freshwater supply is strongly depending on the amount of accumulated snow as well as the moment of its release after snowmelt. The aim of the presented study is to identify possible changes in snow cover characteristics, consisting of snow cover duration, onset and offset of snow cover season within the last 28 years. Relying on remotely sensed data originating from medium resolution imagers, these snow cover characteristics are extracted on a daily basis. The resolution of 500-1000 m allows for a subsequent analysis of changes on the scale of hydrological sub-catchments. Long-term changes are identified from this unique dataset, revealing an ongoing shift towards earlier snowmelt within the Central Asian Mountains. This shift can be observed in most upstream hydro catchments within Pamir and Tian Shan Mountains and it leads to a potential change of freshwater availability in the downstream regions, exerting additional pressure on the already tensed situation. KW - AVHRR data KW - satellite KW - Northern Xinjiang KW - cloud KW - products KW - Central Asia KW - climate change KW - Amu Darya KW - Syr Darya KW - Tian Shan KW - snow KW - snow cover KW - snow cover duration KW - Pamir KW - AVHRR KW - MODIS KW - algorithm KW - validation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114470 SN - 2072-4292 VL - 6 IS - 12 ER -