TY - THES A1 - Anton, Selma T1 - Characterization of cAMP nanodomains surrounding the human Glucagon-like peptide 1 receptor using FRET-based reporters T1 - Charakterisierung der Rezeptor-assoziierten cAMP Nanodomänen des humanen Glucagon-like peptide 1 Rezeptors mittels FRET-basierter Sensoren N2 - Cyclic adenosine monophosphate (cAMP), the ubiquitous second messenger produced upon stimulation of GPCRs which couple to the stimulatory GS protein, orchestrates an array of physiological processes including cardiac function, neuronal plasticity, immune responses, cellular proliferation and apoptosis. By interacting with various effector proteins, among others protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), it triggers signaling cascades for the cellular response. Although the functional outcomes of GSPCR-activation are very diverse depending on the extracellular stimulus, they are all mediated exclusively by this single second messenger. Thus, the question arises how specificity in such responses may be attained. A hypothesis to explain signaling specificity is that cellular signaling architecture, and thus precise operation of cAMP in space and time would appear to be essential to achieve signaling specificity. Compartments with elevated cAMP levels would allow specific signal relay from receptors to effectors within a micro- or nanometer range, setting the molecular basis for signaling specificity. Although the paradigm of signaling compartmentation gains continuous recognition and is thoroughly being investigated, the molecular composition of such compartments and how they are maintained remains to be elucidated. In addition, such compartments would require very restricted diffusion of cAMP, but all direct measurements have indicated that it can diffuse in cells almost freely. In this work, we present the identification and characterize of a cAMP signaling compartment at a GSPCR. We created a Förster resonance energy transfer (FRET)-based receptor-sensor conjugate, allowing us to study cAMP dynamics in direct vicinity of the human glucagone-like peptide 1 receptor (hGLP1R). Additional targeting of analogous sensors to the plasma membrane and the cytosol enables assessment of cAMP dynamics in different subcellular regions. We compare both basal and stimulated cAMP levels and study cAMP crosstalk of different receptors. With the design of novel receptor nanorulers up to 60nm in length, which allow mapping cAMP levels in nanometer distance from the hGLP1R, we identify a cAMP nanodomain surrounding it. Further, we show that phosphodiesterases (PDEs), the only enzymes known to degrade cAMP, are decisive in constraining cAMP diffusion into the cytosol thereby maintaining a cAMP gradient. Following the discovery of this nanodomain, we sought to investigate whether downstream effectors such as PKA are present and active within the domain, additionally studying the role of A-kinase anchoring proteins (AKAPs) in targeting PKA to the receptor compartment. We demonstrate that GLP1-produced cAMP signals translate into local nanodomain-restricted PKA phosphorylation and determine that AKAP-tethering is essential for nanodomain PKA. Taken together, our results provide evidence for the existence of a dynamic, receptor associated cAMP nanodomain and give prospect for which key proteins are likely to be involved in its formation. These conditions would allow cAMP to exert its function in a spatially and temporally restricted manner, setting the basis for a cell to achieve signaling specificity. Understanding the molecular mechanism of cAMP signaling would allow modulation and thus regulation of GPCR signaling, taking advantage of it for pharmacological treatment. N2 - G Protein gekoppelte Rezeptoren (GPCRs) stellen eine große und sehr vielfältige Familie an Membranproteinen dar, deren primäre Funktion die Signalübertragung von extrazellulären Stimuli in intrazelluläre Signale ist. Dank ihrer breiten Expression im gesamten menschlichen Körper regulieren sie unterschiedliche zelluläre Prozesse und damit deren physiologische Funktion, unter anderem die Sinnesempfindung, zelluläre Kommunikation und Neurotransmission. GPCRs stehen im Zusammenhang mit unterschiedlichen Erkrankungen wie Herzinsuffizienz, Krebs, neurologischen Funktionsstörungen und diverser metabolischer Krankheiten, weswegen sie als Ziele („Targets“) zur Behandlung verschiedener Erkrankungen erforscht und genutzt werden. Aufgrund ihrer Expression auf der Zelloberfläche sind sie leicht zugänglich, und die Diversität ihrer Liganden begünstigt zusätzlich ihre Nutzung als pharmakologische Targets. Heutzutage vermitteln bereits 30% aller weltweit zugelassenen Arzneistoffe ihre Wirkung an GPCRs. GPCRs üben ihre Funktion aus, indem sie hauptsächlich an G Proteine binden, welche wiederum die Produktion sogenannter second messenger in Gang setzen. cAMP ist das Hauptsignalmolekül der Rezeptoren, welche an das stimulatorische GS Protein koppeln. cAMP überträgt hunderte ankommende Signale in einer hochspezifischen Weise, indem es an unterschiedliche Effektorproteine bindet, welche sich in bestimmten zellulären Regionen befinden. Dadurch koordiniert dieses Signalmolekül eine Vielzahl zellulärer Prozesse, angefangen bei der Regulierung von Ionenkanalaktivität über die Kontraktilität glatter- und quergestreifter Muskulatur bis hin zur Genexpression, Zellproliferation und Apoptose. Durch die pleiotropen Effekte, welche durch cAMP reguliert werden, stellt sich die Frage, wie GS-gekoppelte Rezeptoren Signalspezifität erreichen, obwohl sie ihre Funktion durch dieses eine Signalmolekül ausführen. Ursprünglich ging man von einer uneingeschränkten Diffusion und dadurch homogenen Verteilung von cAMP in der Zelle aus. Diese Vorstellung ist jedoch nicht mit der Signalisierungsspezifität von GPCRs vereinbar, da unter diesen Umständen cAMP unselektiv all seine Effektorproteine in der gesamten Zelle aktivieren könnte. Daher entstand die Hypothese der cAMP-Kompartimentierung, wobei die Zelle lokal begrenzte Bereiche mit hohen oder niedrigen cAMP Konzentrationen umfassen würde. Jedoch gab es bisher keinerlei Beweise für die Existenz und die molekulare Zusammensetzung mutmaßlicher Domänen. Folglich setzten wir uns als Ziel, hochkonzentrierte cAMP-Kompartimente in der Zelle zu lokalisieren, ihre räumliche Dimension aufzuklären und ihre Rolle zur Realisierung zellulärer Signalisierungsspezifität zu ermitteln. Im Rahmen der vorliegenden Studie setzten wir einen Förster resonance energy transfer (FRET)-basierten cAMP Sensor ein, fusionierten ihn mit dem humanen glucagone-like peptide 1 Rezeptor (hGLP1R) als Prototyp eines GS-koppelnden Rezeptors, um cAMP am Ursprung des Signals zu messen. Mittels dieser Sensoren weisen wir eine Rezeptor-umgebende begrenzte cAMP Domäne nach, welche eine erhöhte cAMP Konzenztration aufweist (Figure ‎3.10). Bei Stimulation des Rezeptors mit GLP1 Konzenztrationen beginnend bei 10 fM entsteht eine Rezeptordomäne mit lokal erhöhten cAMP Konzentrationen, welche getrennt von Plasmamembran und Cytosol ist. Wir zeigen, dass das hGLP1R-Kompartiment geschützt ist vor cAMP Signalen, welche an weiteren, unabhängigen GS-gekoppelten Rezeptoren ihren Ursprung haben (Figure ‎3.11). Um die räumliche Dimension dieser Domäne zu untersuchen, verwendeten wir Nanolinker der Länge 30- und 60 nm als Abstandhalter zwischen Rezeptor und Sensor (Figure ‎3.12) und zeigen dabei, dass sich die Domäne über eine Länge von 60 Nanometern erstreckt, wobei ein abnehmender cAMP-Gradient erkennbar ist. Weiterhin beweisen wir, dass Phosphodiesterasen (PDEs) Schlüsselfaktoren für die Bildung des cAMP-Gradienten um den Rezeptor herum sind, indem sie die Diffusion ins Cytosol beschränken (Figure ‎3.13). Darüber hinaus zeigen wir (Figure ‎3.15), dass Rezeptor-spezifische cAMP Signale PKA-Phosphorylierung in der Rezeptordomäne auslösen und, dass AKAPs elementar für nanodomänen PKA-Aktivität sind, wohingegen die cytosolische PKA-Phosphorylierung unabhängig von AKAP-Targeting der PKA ist (Figure ‎3.16). Zusammenfassend beweisen unsere Ergebnisse die Existenz einer Rezeptor-umgebenden Nanodomäne mit erhöhten cAMP Spiegeln eines GS-gekoppelten Rezeptors. Zeitgleiche Studien in unserer Gruppe zeigen, dass cAMP in der Zelle weitgehend gebunden vorliegt und diffusionslimitiert ist. Dies stellt den Nachweis für eine eingeschränkte Diffusion als molekulare Voraussetzung für die Bildung von Signalkompartimenten dar. Wir gehen davon aus, dass unsere Ergebnisse ein Ausgangspunkt für die Aufklärung von Rezeptoren als Quelle für Signalkompartimente darstellen, jedoch bedarf es weiterer Studien, um die präzise molekulare Zusammensetzung und die beteiligten Proteine dieser Signaldomäne zu untersuchen. Das Grundverständnis der Signalisierungskaskaden auf molekularer Ebene könnte es uns ermöglichen, die zellulären Reaktionen zu manipulieren, um eine Fehlfunktion der Signalisierung in erkrankten Zellen wiederherzustellen. Da der hGLP1R entscheidend für Aufrechterhaltung ausgeglichener Blutglucosespiegel ist, würde die Erfassung der molekularen Details der kompartimentalisierten Signalübertragung die Feinabstimmung der Rezeptorsignale ermöglichen, um ihn als spezifisches Target zur Behandlung von Diabetes Mellitus einzusetzen. KW - FRET KW - cAMP KW - compartments KW - GPCR Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190695 ER - TY - THES A1 - Balakrishnan, Ashwin T1 - Fast molecular mobility of β\(_2\)-adrenergic receptor revealed by time-resolved fluorescence spectroscopy T1 - Schnelle molekulare Beweglichkeit des β\(_2\)-adrenergen Rezeptors durch zeitaufgelöste Fluoreszenzspektroskopie N2 - G-protein- coupled receptors (GPCRs) are the largest family of membrane confined receptors and they transduce ligand binding to downstream effects. Almost 40% of the drugs in the world target GPCRs due to their function, albeit knowing less about their activation. Understanding their dynamic behaviour in basal and activated state could prove key to drug development in the future. GPCRs are known to exhibit complex molecular mobility patterns. A plethora of studies have been and are being conducted to understand the mobility of GPCRs. Due to limitations of imaging and spectroscopic techniques commonly used, the relevant timescales are hard to access. The most commonly used techniques are electron paramagnetic resonance or double electronelectron resonance, nuclear magnetic resonance, time-resolved fluorescence, single particle tracking and fluorescence recovery after photobleaching. Among these techniques only fluorescence has the potential to probe live cells. In this thesis, I use different time-resolved fluorescence spectroscopic techniques to quantify diffusion dynamics / molecular mobility of β2-adrenergic receptor (β2-AR) in live cells. The thesis shows that β2-AR exhibits mobility over an exceptionally broad temporal range (nanosecond to second) that can be linked to its respective physiological scenario. I explain how β2-AR possesses surprisingly fast lateral mobility (~10 μm²/s) associated with vesicular transport in contrast to the prior reports of it originating from fluorophore photophysics and free fluorophores in the cytosol. In addition, β2-AR has rotational mobility (~100 μs) that makes it conform to the Saffman-Delbrück model of membrane diffusion unlike earlier studies. These contrasts are due to the limitations of the methodologies used. The limitations are overcome in this thesis by using different time-resolved fluorescence techniques of fluorescence correlation spectroscopy (FCS), time-resolved anisotropy (TRA) and polarisation resolved fullFCS (fullFCS). FCS is limited to microsecond to the second range and TRA is limited to the nanosecond range. fullFCS complements the two techniques by covering the blind spot of FCS and TRA in the microsecond range. Finally, I show how ligand stimulation causes a decrease in lateral mobility which could be a hint at cluster formation due to internalisation and how β2-AR possesses a basal oligomerisation that does not change on activation. Thus, through this thesis, I show how different complementary fluorescence techniques are necessary to overcome limitations of each technique and to thereby elucidate functional dynamics of GPCR activation and how it orchestrates downstream signalling. N2 - G¬Protein¬gekoppelte Rezeptoren (GPCRs) sind die größte Familie der Membran¬Rezeptoren und durch Bindung von Liganden leiten sie extrazlluläre Signal in das Innere der Zelle weiter. Fast 40% der Medikamente auf der Welt zielen aufgrund ihrer Funktion auf GPCRs ab, obwohl man relative wenig über ihre Aktivierung weiß. Das Verständnis ihres dynamischen Verhaltens im basalen und aktivierten Zustand könnte sich in Zukunft als Schlüssel zur Medikamentenentwicklung erweisen. GPCRs sind dafür bekannt, dass sie komplexe molekulare Bewegungsmuster aufweisen. Eine Fülle von Studien wurden und werden durchgeführt, um die Beweglichkeit von GPCRs zu verstehen. Aufgrund der Einschränkungen der gängigen bildgebenden und spektroskopischen Techniken sind die relevanten Zeitskalen nur schwer messbar. Die am häufigsten verwendeten Techniken sind die paramagnetische Elektronenresonanz oder die Doppel¬Elektron¬Elektron¬Resonanz, die magnetische Kernresonanz, die zeitaufgelöste Fluoreszenz, die Einzelpartikelverfolgung und die Fluoreszenzwiederherstellung nach Photobleichung. Unter diesen Techniken haben nur die Fluoreszenz¬basierten Techniken das Potential, lebende Zellen zu untersuchen. In dieser Arbeit werden verschiedene zeitaufgelöste fluoreszenzspektroskopische Techniken zur Quantifizierung der Diffusionsdynamik oder molekularen Mobilität des β2¬adrenergen Rezeptors (β2¬AR) in lebenden Zellen verwendet. Diese Arbeit zeigt, dass β2-AR eine Beweglichkeit über einen außergewöhnlich breiten, zeitlichen Bereich (Nanosekunde bis Sekunde) aufweist, der mit dem jeweiligen physiologischen Szenario verknüpft werden kann. Es wird gezeigt, wie β2¬AR eine überraschend schnelle, laterale Bewegung (~10 μm²/s) besitzt, welche mit vesikulärem Transport in Verbindung gebracht werden kann. Im Gegensatz zu früheren Berichten, wonach die beobachtete Komponente von der Photophysik der Fluorophore und freien Fluorophoren im Zytosol abstammt. Zusätzlich weist β2¬AR eine Rotationsbeweglichkeit (~100 μs) auf, welche es ¬ im Gegensatz zu früheren Studien ¬ dem Saffman¬Delbrück¬Modell der Membrandiffusion zuordnen lässt. Dieser Unterschied ist auf die Beschränkungen der verwendeten Techniken zurückzuführen. Die Einschränkungen werden in dieser Arbeit durch die Verwendung verschiedener zeitaufgelöster Fluoreszenztechniken überwunden, z. B. der Fluoreszenzkorrelationsspektroskopie (FCS) im Bereich von mehreren hundert Nanosekunden bis Sekunden, der zeitaufgelösten Anisotropie (TRA) im Nanosekundenbereich und der polarisationsaufgelösten FullFCS (FullFCS), die die zeitlich Lücke zwischen FCS und TRA schließt. Zuletzt wird eine Abnahme der lateralen Beweglichkeit durch Ligandenstimulation gezeigt, was ein Hinweis auf Clusterbildung aufgrund von Internalisierung sein könnte, und dass β2¬AR eine basale Oligomerisierung aufweist, die sich bei Aktivierung nicht ändert. Zusammenfassend kann man sagen, dass verschiedene komplementäre Fluoreszenztechniken notwendig sind, um die Einschränkungen der einzelnen Techniken zu überwinden und dadurch die funktionelle Dynamik der GPCR¬Aktivierung und deren Bedeutung für die nachgeschaltete Signalübertragung aufzuklären. KW - Fluorescence correlation spectroscopy KW - GPCR KW - time-resolved anisotropy KW - adrenergic receptor KW - homoFRET Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250856 ER - TY - THES A1 - Bathe-Peters, Marc T1 - Spectroscopic approaches for the localization and dynamics of β\(_1\)- and β\(_2\)-adrenergic receptors in cardiomyocytes T1 - Spektroskopieansätze zur Bestimmung der Lokalisation und Dynamiken von β\(_1\)- und β\(_2\)-Adrenozeptoren in Kardiomyozyten N2 - In the heart the β\(_1\)-adrenergic receptor (AR) and the β\(_2\)-AR, two prototypical G protein-coupled receptors (GPCRs), are both activated by the same hormones, namely adrenaline and noradrenaline. Both receptors couple to stimulatory G\(_s\) proteins, mediate an increase in cyclic adenosine monophosphate (cAMP) and influence the contractility and frequency of the heart upon stimulation. However, activation of the β\(_1\)-AR, not the β\(_2\)-AR, lead to other additional effects, such as changes in gene transcription resulting in cardiac hypertrophy, leading to speculations on how distinct effects can arise from receptors coupled to the same downstream signaling pathway. In this thesis the question of whether this distinct behavior may originate from a differential localization of these two receptors in adult cardiomyocytes is addressed. Therefore, fluorescence spectroscopy tools are developed and implemented in order to elucidate the presence and dynamics of these endogenous receptors at the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. This allows the visualization of confined localization and diffusion of the β\(_2\)-AR to the T-tubular network at endogenous expression. In contrast, the β\(_1\)-AR is found diffusing at both the outer plasma membrane and the T-tubules. Upon overexpression of the β\(_2\)-AR in adult transgenic cardiomyocytes, the receptors experience a loss of this compartmentalization and are also found at the cell surface. These data suggest that distinct signaling and functional effects can be controlled by specific cell surface targeting of the receptor subtypes. The tools at the basis of this thesis work are a fluorescent adrenergic antagonist in combination of fluorescence fluctuation spectroscopy to monitor the localization and dynamics of the lowly expressed adrenergic receptors. Along the way to optimizing these approaches, I worked on combining widefield and confocal imaging in one setup, as well as implementing a stable autofocus mechanism using electrically tunable lenses. N2 - Im Herzen werden der β\(_1\)-adrenerge Rezeptor (AR) und der β\(_2\)-AR, zwei prototypische GPCR, durch die Hormone Adrenalin und Noradrenalin aktiviert. Dabei interagieren beide Rezeptoren mit dem stimulatorischen G\(_s\) Protein, bewirken eine Erhöhung des cyclischen Adenosinmonophosphates (cAMP) und beeinflussen die Kontraktionskraft und Frequenz des Herzens nach einem Stimulus. Jedoch hat die Aktivierung des β\(_1\)-ARs, nicht des β\(_2\)-ARs, auch weitere Effekte, wie z.B. Veränderungen in der Transkription von Genen. Dies wiederum führt zu Spekulationen, wie solch unterschiedliche Effekte von Rezeptoren hervorgerufen werden können, die gleiche Signalwege bedienen. In dieser Arbeit wird untersucht, ob dieses unterschiedliche Verhalten durch eine ungleiche Verteilung dieser beiden Rezeptoren in adulten Kardiomyozyten hervorgerufen werden könnte. Dazu wird die Lokalisation und die Dynamik dieser endogenen Rezeptoren in der Plasmamembran sowie im T-tubulären Netzwerk von intakten adulten Kardiomyozyten, unter Entwicklung und Verwendung hochsensitiver Fluoreszenzspektroskopiemethoden, bestimmt. Dies ermöglicht die örtliche und dynamische Eingrenzung des β\(_2\)-adrenergen Rezeptors unter endogener Expression ausschließlich auf das T-tubuläre Netzwerk. Dementgegen stellt sich heraus, dass sich der β\(_1\)-adrenerge Rezeptor ubiquitär auf der äußeren Membran und den T-Tubuli befindet und diffundiert. In β\(_2\)-AR überexprimierenden transgenen Kardiomyozyten hingegen werden diese Kompartments nicht beibehalten und es findet eine Umverteilung der Rezeptoren, auch unter Einbezug der Zelloberfläche, statt. Diese Daten können stärker darauf hindeuten, dass einige Rezeptorsubtypen sich gezielt und spezifisch bestimmte Zelloberflächen aussuchen, um somit ihre verschiedenen Signale und funktionären Effekte erzeugen zu können. Zu den Techniken, die in dieser Arbeit die Bestimmung der Lokalisation und der Dynamiken der niedrig exprimierten adrenergen Rezeptoren zulassen, gehört die Anwendung von Fluoreszenzspektroskopiemethoden in Kombination mit einem fluoreszierenden β-adrenergen Antagonisten. Weitere Techniken, die im Rahmen dieser Arbeit entwickelt wurden und in weiterführenden Studien aufschlussreiche Erkenntnisse liefern könnten, umfassen die Entwicklung eines Setups aus einer Kombination aus Weitfeld- und Konfokalmikroskopie und die Implementierung eines stabilen Autofokus mit Hilfe einer elektrisch veränderbaren Linse. KW - G-Protein gekoppelte Rezeptoren KW - Beta-Adrenozeptor KW - Kardiomyozyt KW - Fluoreszenzmikroskopie KW - Fluoreszenzkorrelationsspektroskopie KW - Fluorescence KW - Fluorescence Microscopy KW - G Protein-Coupled Receptor KW - Autofocus KW - Microscopy KW - Beta-Adrenergic Receptor KW - Cardiomyocyte KW - Fluorescence Correlation Spectroscopy KW - FCS KW - GPCR Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258126 ER - TY - THES A1 - Bätz, Julia T1 - FRET-basierte Untersuchungen zur ligandenselektiven Beeinflussung der Rezeptorkonformation durch orthosterische und allosterische Liganden am Beispiel des muskarinischen M2 Acetylcholinrezeptors T1 - FRET-based analysis of the ligandselective influence of orthosteric and allosteric ligands on the change of receptor conformation of the muscarinic m2 acetylcholine receptor N2 - Zahlreiche experimentelle Befunde lassen vermuten, dass G-Protein gekoppelte Rezeptoren (GPCR) nach ihrer Aktivierung einer ligandenselektiven Änderung der Rezeptorkonformation unterliegen. Ziel der vorliegenden Arbeit war es dieses Phänomen am Subtyp 2 der muskarinischen Acetylcholinrezeptoren (M2 AChR) zu untersuchen. Muskarinische Acetylcholinrezeptoren (mAChR) können in fünf Subtypen (M1-M5) unterschieden werden. Durch die Beteiligung der mAChR an zahlreichen physiologischen Prozessen stellen sie wichtige Zielstrukturen pharmakologischer Therapien dar. Da die orthosterische Ligandenbindestelle (= Bindestelle des endogenen Liganden) in allen fünf Subtypen hoch konserviert ist, wird ihr pharmakologischer Nutzen derzeit allerdings durch die unselektive Rezeptormodulation und dem damit verbundenen Auftreten unerwünschter Arzneimittelwirkungen stark limitiert. Ein Ansatz zur Erzielung subtypselektiver Effekte besteht in der Verwendung allosterischer Modulatoren. Da die allosterische Bindestelle der mAChR eine geringere Sequenzhomologie aufweist, können so gezielt einzelne Subtypen der mAChR reguliert werden. Der M2 AChR stellt hinsichtlich allosterischer Modulation ein gut charakterisiertes Modellsystem dar. Für ihn wurde bereits eine Vielzahl allosterischer Liganden entwickelt. Auch bitopische Liganden, die sowohl einen allosterischen als auch einen orthosterischen Anteil enthalten, wurden für den M2 AChR bereits beschrieben. Im ersten Teil der vorliegenden Arbeit wurden verschiedene FRET-Sensoren des M2 AChR generiert und charakterisiert. Als FRET-Paar wurden das cyan fluoreszierende Protein (CFP) und der niedermolekulare fluorescein-basierte Fluorophor FlAsH (fluorescein arsenical hairpin binder) gewählt. CFP wurde in den Sensoren am Ende des C-Terminus angefügt. Die zur Markierung mit FlAsH nötige Tetracysteinsequenz wurde in verschiedenen Bereichen der dritten intrazellulären Rezeptorschleife (IL) eingebracht. Die auf diese Weise erstellten Re-zeptorsensoren trugen das Tetracysteinmotiv in der N terminalen (M2i3-N) bzw. in der C terminalen Region (M2i3-C) von IL 3. Die Charakterisierung der Rezeptorsensoren bezüglich Ligandenbindung, Gi-Protein Aktivierung und β-Arrestin2 Translokation ergab keine signifikanten Unterschiede zwischen M2i3-N, M2i3 C und M2CFP oder Wildtyp M2 AChR. Zunächst wurden sowohl unterschiedliche orthosterische, als auch allosterische Liganden hinsichtlich ihrer mittleren effektiven Konzentration und ihrer maximalen Wirkstärke an den Rezeptorsensoren untersucht. Mit Hilfe von FRET-Messungen konnte ein superago-nistisches Verhalten des orthosterischen Testliganden Iperoxo gezeigt werden. Die Eigenschaften der allosterischen Substanzen wurden durch Messung der Rezeptordeakti-vierungskinetik und des maximalen Hemmeffekts auf einen vorstimulierten Rezeptor charakterisiert. Alle allosterischen Liganden deaktivierten den vorstimulierten M2 AChR mit einer schnelleren Kinetik als Atropin. Die EC50-Werte der unterschiedlichen Substanzen waren unabhängig von der Markierungsposition im verwendeten Rezeptorsensor vergleich-bar. Ausnahmen bildeten die allosterischen Liganden JK 289, JK 338, ½ W84 und EHW 477, die liganden- und sensorabhängig unterschiedliche mittlere effektive Konzentrationen aufwie-sen. Bei der Untersuchung der Konformationsänderung des M2 AChR konnte kein liganden-selektiver Unterschied zwischen den FRET-Signalen für 19 getestete orthosterische Liganden beobachtet werden. Dies deutet darauf hin, dass alle orthosterischen Testliganden eine dem Acetylcholin (ACh) vergleichbare Änderung der M2 AChR Konformation induzier-ten. Um zu untersuchen, ob für die orthosterischen Testliganden eine Korrelation zwischen ihrer maximalen Wirkstärke hinsichtlich Rezeptoraktivierung in FRET-Experimenten und der Aktivierung nachgeschalteter Signalwege besteht, wurde die orthosterisch-vermittelte Translokation von β-Arrestin2 mit Hilfe der Konfokalmikroskopie bestimmt. Bis auf 5-Methyl-furmethiodid translozierten alle orthosterischen Liganden β-Arrestin2 in einem Ausmaß, das mit der maximalen Rezeptoraktivierung vergleichbar war. Dagegen rief 5 Methylfurmethiodid verglichen mit dem endogenen Liganden ACh zwar eine ca. halbmaximale Rezeptorakti-vierung, aber nur eine äußerst geringe β-Arrestin2 Translokation hervor. Im zweiten Teil der Arbeit wurde der Einfluss verschiedener Allostere auf eine ligandenselektive Konformationsänderung des M2 AChR untersucht. Die allosterischen Liganden JK 337 und Seminaph beeinflussten den M2i3-C Sensor signifikant stärker, als das M2i3-N Konstrukt. Dagegen zeigte EHW 477 eine stärkere Beeinflussung der Rezeptorkon-formation des M2i3-N-, als des M2i3-C Sensors. Dies erlaubt die Vermutung, dass JK 337 und Seminaph eine stärkere Bewegung unterhalb von Transmembrandomäne (TM) 6, als unterhalb von TM 5 hervorriefen. Die Ergebnisse für EHW 477 legen nahe, dass TM 5 eine größere Bewegung eingeht, als TM 6. FRET-basierte Untersuchungen der Einflüsse der allosterischen Testliganden auf nachgeschaltete Signalwege ergaben, dass sowohl die Akti-vierung des Gi Proteins, als auch die β-Arrestin2 Translokation selektiv durch einzelne allosterische Liganden beeinflusst werden. Auch ein Zusammenhang zwischen Rezeptor-aktivierung und der Regulation nachgeschalteter Signalwege war erkennbar. Allerdings waren auf Grund der Versuchsbedingungen keine quantitativen Aussagen möglich. Im Folgenden wurden die bitopischen Liganden Hybrid 1 und 2 (H 1, H 2) hinsichtlich ihres Effekts auf die Konformationsänderung des M2 AChR untersucht. Während eine Stimulation mit H 1 vergleichbare FRET-Signale an beiden Sensoren ergab, konnte mit H 2 weder am M2i3-N-, noch an M2i3-C Sensor eine FRET-Änderung detektiert werden. Um den mangeln-den Effekt der Hybridsubstanzen in FRET-mikroskopischen Untersuchungen aufzuklären, wurden verschiedene Ansätze gewählt: Mit kettenverlängerten Derivaten der Hybridsubstanzen konnte in FRET-Messungen eine Änderung des FRET-Signals detektiert werden. Die Entfernung des allosterischen Bausteins führte in FRET-Experimenten zu einer verglichen mit dem endogenen Liganden ACh etwa halbmaximalen Aktivierung beider Sensoren. Dagegen resultierte die Mutation der alloste-rischen Bindestelle in nachfolgenden FRET-Untersuchungen mit H 1 und H 2 in keiner Signaländerung des FRET-Ratio. Diese Beobachtungen führten zu der Annahme, dass die Linkerkette, die orthosterischen und allosterischen Baustein der Hybride miteinander verbindet, zu kurz war um eine gleichzeitige Bindung an die allosterische und orthosterische Bindestelle zu ermöglichen. Ein anderer Erklärungsansatz besteht darin, dass nach Bindung des Orthosters der Kanal zwischen orthosterischer und allosterischer Bindestelle durch die Konformationsänderung des Rezeptors verschlossen wird, weshalb keine dauerhafte, dualsterische Bindung der Hybridsubstanzen an den M2 AChR möglich ist. Im Rahmen der vorliegenden Arbeit ist es gelungen mittels FRET-Experimenten die Existenz einer ligandenselektiven Rezeptorkonformation des M2 AChR mit allosterischen Liganden nachzuweisen. Darüber hinaus konnte auch ein Bezug zum Auftreten einer funktionellen Selektivität mit allosterischen Liganden hergestellt werden. Die Untersuchung von 19 orthosterischen Liganden hinsichtlich ihres Einflusses auf die Rezeptorkonformation des M2 AChR ergab keinen Hinweis auf eine ligandenselektive Konformationsänderung. Die Betrachtung der orthosterisch-vermittelten Translokation von β-Arrestin2 zeigte, dass zwischen der Effizienz der orthosterischen Testliganden, den M2 AChR zu aktivieren und dem Ausmaß, in dem sie eine β Arrestin2 Translokation induzierten eine direkte Korrelation besteht. Lediglich 5-Methylfurmethiodid rief eine ungleich geringere β-Arrestin2 Translokation hervor, verglichen mit dem Ausmaß an Rezeptoraktivierung. Diese Beobachtung deutet auf die Existenz eines signaling-bias für diesen Liganden hin. Die Untersuchung der dualsterischen Liganden H 1 und 2 bezüglich ihrer Fähigkeit zur Rezeptoraktivierung ergab, dass erst durch eine Verlängerung der Linkerkette, durch die orthosterischer und alloste-rischer Baustein miteinander verbunden sind eine Konformationsänderung des M2 AChR hin zu einer aktiven Konformation erreicht werden kann. Es kann somit angenommen werden, dass in den ursprünglichen Hybridsubstanzen H 1 und H 2 eine zu kurze Linkerkette, durch die keine dualsterische Bindung der Hybride an die allosterische und orthosterische Bindestelle möglich ist, ursächlich für die mangelnde Rezeptoraktivierung des M2 AChR war. N2 - A large body of experimental evidence suggests that upon receptor activation G-protein coupled receptors are subject to ligandspecific changes of receptor conformation. The aim of this study was to investigate this phenomenon using the muscarinic M2 acetylcholine receptor (M2 AChR). Muscarinic acetylcholine receptors (mAChR) can be subdivided into five different subtypes (M1-M5). Their involvement in various physiological processes makes them an important target of pharma-cological therapies. With the orthosteric binding site (= binding site of the endogenous ligand) being highly conserved across all five mAChR subtypes, the unselective receptor modulation can lead to severe side effects. Thus the clinical use of drugs modulating muscarinic receptors is currently limited. Allosteric modulation is one attempt to achieve subtype-selective receptor regulation. Since the allosteric binding site of mAChR is less well conserved, it is possible to selectively target one mAChR subtype. As far as allosteric modulation is concerned, the M2 AChR represents a well characterized model with a large number of allosteric modulators being available. For the M2 AChR bitopic ligands which contain an allosteric as well as an orthosteric binding block have been developed as well. In the first part of this study several FRET-sensors of the M2 AChR were designed and characterized. The cyan fluorescent protein (CFP) was fused to the C-terminus of both sensors while the FlAsH (fluorescein arsenical hairpin binder) binding site was inserted into the N-terminal (M2i3-N) or the C terminal (M2i3-C) region of the third interacellular loop (IL). The receptor sensors were characterized concerning ligand affinity, activation of the Gi protein and -arrestin2 translocation and did not display any significant differences compared to the wildtype M2 or the M2 CFP receptor. Various orthosteric as well as allosteric ligands were investigated regarding their affinity and efficacy at both sensors. Using FRET-measurements iperoxo was proven to behave as a superagonist. The characteristics of the allosteric ligands were investigated by measuring the receptor deactivation kinetics and their maximum inhibitory effect on a pre-stimulated receptor. All allosteric test substances displayed faster deactivation kinetics compared to the antagonist atropine and similar EC50 values at both receptor sensors. When investigating the change of receptor conformation of the M2 AChR upon ligand binding there were no ligand selective differences in the FRET-signal detected for either of the 19 orthosteric ligands at both M2 sensors. This data suggest that all orthosteric ligands induced a change in receptor conformation comparable to acetylcholine (ACh). In order to correlate the efficacy of various orthosteric ligands to activate the M2 AChR in FRET-experiments with their effect on downstream signaling pathways, the translocation of  arrestin2 upon receptor activation with orthosteric ligands was investigated using confocal microscopy. Except for 5 methylfurmethiodide all orthosteric ligands induced -arrestin2 translocation to an extent which was comparable to the maximal receptor activation observed with each other ligand, respectively. In contrast 5-methylfurmethiodide evoked a half maximal receptor activation compared to the endogenous ligand ACh while only a minimal translocation of -arrestin2 was observed. The second aim of this study was to investigate the effects of allosteric ligands on the change of receptor conformation of the M2 AChR. The allosteric ligands JK 337 and seminaph more strongly influenced the M2i3-C than the M2i3-N, whilst EHW 477 behaved just the opposite way. This data suggest that the orthosteric ligands induce a conformation of the M2 AChR comparable to ACh. JK 337 and seminaph seem to evoke a greater movement underneath TM 6 compared to TM 5 whereas EHW 477 probably induces a larger movement beneath TM 5. The allosteric ligands were tested via FRET-measurements concerning their ability to activate the Gi protein and to translocate  arrestin2. The activation of the Gi protein as well as the -arrestin2 translocation were selectively influenced by all allosteric ligands. However, due to the experimental setup, a quantification of the effects was not possible. Furthermore the bitopic ligands hybrid 1 and 2 (H 1, H 2) were tested regarding their effect on the receptor conformation of the M2 AChR. While stimulation with H 1 induced FRET signals that were comparable for both receptor sensors, it wasn’t possible to detect any change in the FRET ratio neither of the M2i3-N nor of the M2i3-C with H 2. The lack of effect of H 1 and H 2 in the FRET-experiments was explored using two different approaches: Derivatives of H 1 and H 2, in which the carbon linker between the allosteric and the orthosteric building block had been elongated, were able to induce changes in the FRET ratio. Upon the removal of the allosteric building block a half-maximal activation of both receptor sensors could be detected. However, the mutation of the allosteric binding site did not result in any change of the FRET-signals upon stimulation of the receptor mutants with H 1 or H 2. These data suggest that the carbon linker, which connects the allosteric and the orthosteric building block, is not long enough to enable a simultaneous binding to the allosteric and the orthosteric binding site. Another explanation would be that upon binding of an orthoster the channel between the orthosteric and the allosteric binding site of the M2 AChR is closed because of the change in receptor conformation, hence a stable, dual-steric binding of the hybrid substances to the M2 AChR would not be possible. In the course of this study it was possible to prove the existence of a ligand selective receptor conformation of the M2 AChR with allosteric ligands using FRET-experiments. In addition a connection was found to the occurrence of a functional selctivity with allosteric ligands. The investigation of 19 orthosteric ligands regarding their influence on the receptor conformation of the M2 AChR did not reveal any evidence of the existence of a ligand selective change of the receptor conformation. Regarding the translocation of β arrestin2 induced by orthosteric ligands there was a direct correlation between the efficency of the orthosteric ligands to activate the receptor and the extend of β-arrestin2 translocation observed. With the only exception being 5-methylfurmethiodide which induced far less β arrestin2 translocation compared to the magnitude of the conformational change of the receptor. This data suggest the existence of a signaling bias for this ligand. The analysis of the dualsteric ligands H 1 and H 2 concerning their ability to activate the M2 AChR revealed that an activation of the M2 AChR could just be observed upon elongation of the linker which connects the orthosteric with the allosteric building block. This suggests that the short linker chain of the original hybrid substances inhibited a dualsteric binding to the orthosteric and the allosteric binding site and thus caused the difficency of H 1 and H 2 to activate the M2 AChR. KW - Muscarinrezeptor KW - Allosterie KW - G-Protein gekoppelte Rezeptoren KW - Fluoreszenz-Resonanz-Energie-Transfer KW - allosteric modulation KW - muscarinic aceylcholine receptor KW - GPCR Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72836 ER - TY - THES A1 - Dolles, Dominik T1 - Development of Hybrid GPCR Ligands: Photochromic and Butyrylcholinesterase Inhibiting Human Cannabinoid Receptor 2 Agonists T1 - Entwicklung von hybriden GPCR Liganden: Photochrome und Butyrylcholinesterase-inhibierende Cannabinoid Rezeptor 2 Agonisten N2 - While life expectancy increases worldwide, treatment of neurodegenerative diseases such as AD becomes a major task for industrial and academic research. Currently, a treatment of AD is only symptomatical and limited to an early stage of the disease by inhibiting AChE. A cure for AD might even seem far away. A rethinking of other possible targets is therefore necessary. Addressing targets that can influence AD even at later stages might be the key. Even if it is not possible to find a cure for AD, it is of great value for AD patients by providing an effective medication. The suffering of patients and their families might be relieved and remaining years may be spent with less symptoms and restrictions. It was shown that a combination of hCB2R agonist and BChE inhibitor might exactly be a promising approach to combat AD. In the previous chapters, a first investigation of dual-acting compounds that address both hCB2R and BChE was illustrated (figure 6.1). A set of over 30 compounds was obtained by applying SARs from BChE inhibitors to a hCB2R selective agonist developed by AstraZeneca. In a first in vitro evaluation compounds showed selectivity over hCB1R and AChE. Further investigations could also prove agonism and showed that unwanted off-target affinity to hMOP receptor could be designed out. The development of a homology model for hCB2R (based on a novel hCB1R crystal) could further elucidate the mode of action of the ligand binding. Lastly, first in vivo studies showed a beneficial effect of selected dual-acting compounds regarding memory and cognition. Since these first in vivo studies mainly aim for an inhibition of the BChE, it should be the aim of upcoming projects to proof the relevance of hCB2R agonism in vivo as well. In addition, pharmacokinetic as well as solubility studies may help to complete the overall picture. Currently, hybrid-based dual-acting hCB2R agonists and selective BChE inhibitors are under investigation in our lab. First in vitro evaluations showed improved BChE inhibition and selectivity over AChE compared to tacrine.78 Future in vitro and in vivo studies will clarify their usage as drug molecules with regard to hepatotoxicity and blood-brain barrier penetration. Since the role of hCB2R is not yet completely elucidated, the use of photochromic toolcompounds becomes an area of interest. These tool-compounds (and their biological effect) can be triggered upon irradiation with light and thus help to investigate time scales and ligand binding. A set of 5-azobenzene benzimidazoles was developed and synthesized. In radioligand binding studies, affinity towards hCB2R could be increased upon irradiation with UV-light (figure 6.2). This makes the investigated compounds the first GPCR ligands that can be activated upon irradiation (not vice versa). The aim of upcoming research will be the triggering of a certain intrinsic activity by an “efficacy-switch”. For this purpose, several attempts are currently under investigation: an introduction of an azobenzene moiety at the 2-position of the benzimidazole core already led to a slight difference in efficacy upon irradiation with UV light. Another approach going on in our lab is the development of hCB1R switches based on the selective hCB1R inverse agonist rimonabant. First in vitro results are not yet available (figure 6.3). N2 - Durch die weltweit steigende Lebenserwartung rückt die Behandlung von neurodegenerativen Krankheiten, wie der Alzheimer’schen Krankheit, immer mehr in den Fokus der industriellen und akademischen Forschung. Momentan erfolgt die Behandlung der Alzheimer’schen Krankheit durch die Blockade der AChE nur symptomatisch und in einem Frühstadium. Eine Heilung scheint dabei in weiter Ferne zu liegen, weshalb ein Umdenken nach neuen Ansätzen stattfinden sollte. Der Schlüssel könnte darin liegen, dass man biologischen Funktionen adressiert, die den Verlauf der Alzheimer’schen Krankheit auch in einem späteren Stadium beeinflussen. Selbst wenn eine Heilung in absehbarer Zeit unmöglich bleibt, ist es für die betroffenen Patienten eine erhebliche Erleichterung auf eine effektive Medikation zurückgreifen zu können. Das Leid der Patienten und ihrer Familien könnte dadurch gelindert und die verbleibenden Lebensjahre ohne Symptome und Einschränkungen genossen werden. In den vorangegangenen Kapiteln wurde bereits gezeigt, dass die Kombination aus einem hCB2R Agonisten und einem BChE Hemmer genau diesen vielversprechenden Ansatz verfolgt. Ein erster Entwicklungsansatz von dual-aktiven hCB2R Agonisten / BChE Hemmern wurde in den Kapiteln 3 und 4 ausführlich dargestellt (Abb. 7.1). Ein Set von 30 verschiedenen Verbindungen wurde synthetisiert, indem die Erkenntnisse der Struktur-Wirkungsbeziehungen von anderen BChE Hemmern auf einen von AstraZeneca entwickelten selektiven hCB2R Agonisten angewendet wurden. Erste in vitro Untersuchungen zeigten eine hohe Selektivität gegenüber hCB1R und AChE auf. Desweiteren verhielten sich alle getesteten Substanzen wie Agonisten. Nachdem ausgewählte Substanzen auf ihre „off-target“ Wechselwirkung mit dem hMOP Rezeptor untersucht wurden, konnten diese strukturellen Merkmale in nachfolgenden Entwicklungsbemühungen berücksichtigt werden. Die Entwicklung eines hCB2R Homologiemodells (basierend auf einer erst kürzlich veröffentlichten hCB1R Kristallstruktur) lieferte wertvolle Informationen zum Bindemodus und der Wirkweise der Liganden am Rezeptor. Schlussendlich konnte in einer ersten in vivo Studie bewiesen werden, dass ausgewählte dual-aktive Substanzen eine positive Auswirkung auf das Gedächtnis und die kognitiven Eigenschaften haben. Da diese in vivo Untersuchungen hauptsächlich die Hemmung der BChE berücksichtigen, wäre es sinnvoll, in zukünftigen Studien den Einfluss der hCB2R Agonisten zu untersuchen. Pharmakokinetik- und Löslichkeitsstudien könnten zudem helfen, das Gesamtbild zu komplettieren. Im Moment befinden sich auch dual-aktive hCB2R Agonisten / BChE Hemmer in der Entwicklung, die den Hybrid-Ansatz verfolgen. Erste in vitro Untersuchungen dazu ergaben vielversprechende Ergebnisse mit einer guten Selektivität gegenüber AChE und einer erhöhten Hemmung der BChE verglichen mit Tacrin.78 Es wird Gegenstand zukünftiger in vitro und in vivo Untersuchungen sein, herauszufinden, ob sich diese Hybride mit Hinblick auf Hepatotoxizität und Blut-Hirnschrankengängigkeit als Wirkstoffe eignen. Da die Rolle des hCB2R noch nicht komplett erforscht ist, erfreut sich die Entwicklung von sog. „tool-compounds“ großen wissenschaftlichen Interesses. Durch die Bestrahlung mit Licht können diese „tool-compounds“ (und ihr nachgeschalteter biologischer Effekt) gesteuert werden. Eine genauere Untersuchung von Zeitskalen und Ligandbindung an den Rezeptor wird dadurch ermöglicht. Ein Set von 5-Azobenzolbenzimidazolen wurde zu diesem Zwecke entwickelt und synthetisiert. In Radioligandbindungsstudien konnte gezeigt werden, dass sich die Affinität gegenüber dem hCB2R durch die Bestrahlung mit UV-Licht erhöhen lässt (Abb. 7.2). Diese Eigenschaft macht die entwickelten Substanzen zu den ersten GPCR-Liganden, die durch Licht aktiviert werden können (nicht umgekehrt wie bei den bisher beschriebenen photochromen GPCR-Liganden). Ziel zukünftiger Forschungsbemühungen wird die Steuerung einer bestimmten intrinsischen Aktivität / Effekts durch die Bestrahlung mit Licht sein. Zu diesem Zwecke werden aktuell mehrere Herangehensweisen untersucht: die Einführung eines Azobenzol-Strukturelements an Position 2 des Benzimidazol-Grundgerüsts zeigte in ersten in vitro Untersuchungen bereits Unterschiede bei Bestrahlung mit UV-Licht. Eine weitere Herangehensweise ist die Entwicklung von „Photo-Schaltern“ auf Basis von Rimonabant, einem selektiven hCB1R inversen Agonisten. Hier stehen erste in vitro Ergebnisse jedoch noch aus (Abb. 7.3). KW - Ligand KW - Hybrid KW - GPCR KW - Cannabinoid Receptor KW - Butyrylcholinesterase KW - Agonist KW - Agonist KW - Cholinesterase KW - G-Protein gekoppelte Rezeptor KW - Hybrid GPCR Ligands Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163445 ER - TY - THES A1 - Dorsch, Sandra T1 - Rezeptor-Rezeptor-Interaktion ß-adrenerger Rezeptoren T1 - Receptor-Receptor Interaction of ß-adrenergic Receptors N2 - Viele Membranrezeptoren liegen als über Disulfidbrücken-verbundene Dimere vor. Ein Nachweis der Dimerisierung ist in diesen Fällen methodisch klar und einfach zu erbringen. Für die meisten G-Protein-gekoppelten Rezeptoren dagegen ist weder die Existenz von Di- oder Oligomeren noch deren Funktion eindeutig belegt. Meist wurden Methoden wie Coimmunopräzipitation und Resonanz-Energie-Transfer-Verfahren wie BRET oder FRET verwendet, um Protein-Protein-Interaktionen zu untersuchen. Trotz ihrer hohen Sensitivität besitzen diese Methoden einige Grenzen und können je nach experimentellem Ansatz und Verwendung verschiedener Kontrollen, unterschiedliche Ergebnisse hinsichtlich des Vorliegens einer Protein-Protein-Interaktion liefern. Weder die Stabilität der Interaktion, noch die Fraktion der interagierenden Proteine kann mittels Resonanz-Energie-Transfer-Assays zuverlässig ermittelt werden. Auch die Größe der Komplexe ist nicht oder nur technisch aufwendig bestimmbar. Deshalb wurde in dieser Arbeit eine neue, unabhängige Methode entwickelt, um Rezeptor-Rezeptor-Interaktionen in lebenden Zellen genauer untersuchen zu können. Diese auf „Fluorescence Recovery after Photobleaching“ basierende Mikroskopie-Methode erlaubt die Mobilität von Proteinen zu bestimmen. Um Homointeraktionen zwischen Proteinen messen zu können, müssen zwei Protein-Fraktionen mit unterschiedlicher Mobilität vorliegen. Deshalb wurde eine Rezeptor-Fraktion extrazellulär mit YFP markiert und mit Hilfe polyklonaler Antikörper gegen YFP spezifisch immobilisiert. Die andere Rezeptorfraktion wurde intrazellulär mit CFP oder Cerulean markiert und wurde deshalb nicht von extrazellulären Antikörpern erkannt. So konnten mittels Zwei-Farben-FRAP potenzielle Interaktionen zwischen den immobilisierten extrazellulär-markierten Rezeptoren und den intrazellulär-markierten Rezeptoren durch eine Mobilitätsänderung letzterer detektiert werden. Diese Methode wurde mittels eines monomeren (CD86) und kovalent dimeren (CD28) Rezeptors validiert. Es zeigte sich, dass eine spezifische Immobilisierung extrazellulär-markierter Proteine nur durch polyklonale, nicht aber durch monoklonale Antikörper gegen YFP erreicht werden konnte. Intrazellulär-markierte Proteine wurden hierbei in ihrer Mobilität nicht durch die extrazellulären Antikörper beeinflusst. Bei Immobilisierung des extrazellulär-markierten CD86 war das coexprimierte, intrazellulär-markierte CD86-CFP weiterhin voll mobil. Außerdem zeigte das Monomer CD86 eine vom relativen CFP-YFP-Expressionsverhältnis unabhängige Mobilität. Dieses Ergebnis ließ den Schluss zu, dass extra- und intrazellulär-markiertes CD86 nicht miteinander interagieren und als Monomer vorliegen. Die Mobilität des kovalenten Dimers CD28 war dagegen abhängig vom CFP–YFP-Expressionsverhältnis und stimmte gut mit theoretisch erwarteten Werten für ein Dimer überein. Die Anwendung der Zwei-Farben-Methode zur Untersuchung von Interaktionen zwischen ß1- und ß2-adrenergen Rezeptoren zeigte Unterschiede zwischen beiden Rezeptor-Subtypen. ß1-AR zeigte eine spezifische transiente Interaktion, ß2-AR dagegen lagen als stabile Oligomere höherer Ordnung vor. Die transiente Interaktion zwischen ß1-AR und die stabile Oligomerisierung von ß2-AR wurde nicht nur in HEK 293T-Zellen sondern auch in neonatalen Rattenkardiomyozyten und bei 37 °C beobachtet. Ferner hatte der Aktivierungszustand des jeweiligen Rezeptors keinen Einfluß auf das Ausmaß der Interaktion. Zwischen ß1- und ß2-AR wurde nur eine sehr schwache und instabile Heterointeraktion mittels der Zwei-Farben-FRAP-Methode beobachtet. Um zu überprüfen, ob eine direkte Interaktion zwischen den adrenergen Rezeptoren vorliegt, wurde die BRET-Methode verwendet. Mittels BRET wurde eine direkte Interaktion zwischen ß2-AR festgestellt, jedoch konnte nicht zwischen Dimeren und Oligomeren höherer Ordnung unterschieden werden. Bei ß1-AR fand bei höheren YFP-Rluc-Expressionsverhältnissen ein spezifischer Energietransfer statt. Bei niedrigeren Expressionsverhältnissen lag das Signal jedoch im unspezifischen Bereich. Auch bei Untersuchung der Heterointeraktion zwischen ß1- und ß2-AR konnte keine klare Aussage über eine spezifische Interaktion zwischen beiden Rezeptor-Subtypen getroffen werden. N2 - Many membrane receptors exist as disulfide-bond dimers. In these cases dimerization is methodological clearly and easily provable. However, for most G-protein coupled receptors the postulated existence of di- or oligomerization nor their function is definitely demonstrated. Mostly, methods like co-immunoprecipitation and resonance energy transfer techniques like BRET and FRET were used to investigate protein-protein interactions. Despite their high sensitivity these methods have some limits and reveal sometimes distinct results regarding the occurrence of a protein-protein interaction depending on experimental approach and use of different controls. Neither the stability of the interaction nor the fraction of interacting proteins are determinable using resonance energy transfer assays. Furthermore the size of complexes is not or only technically difficult determinable. Therefore in this work a novel independent approach was developed to allow a more detailed investigation of receptor-receptor interactions in living cells. This method based on fluorescence recovery after photobleaching microscopy allows to determine the mobility of proteins. In order to measure homo-interactions between proteins two protein fractions with different mobility have to be distinguishable. Therefore one receptor fraction was extracellularly tagged with YFP and specifically immobilized using polyclonal antibodies against YFP. The other receptor fraction was intracellularly labeled with CFP or Cerulean and therefore not recognized by the extracellular antibodies. In this way using dual-color FRAP potential interactions between immobilized extracellularly-tagged receptors and intracellularly-tagged receptors were detectable due to a change of mobility of the latter. This method was validated using monomeric (CD86) and covalent dimeric (CD28) receptors. A specific immobilization of extracellularly-tagged proteins was achievable only by using polyclonal but not monoclonal antibodies against YFP. Intracellularly tagged proteins were not influenced in their mobility by extracellular antibodies. After immobilization of the extracellularly-labeled CD86 the coexpressed intracellularly-tagged CD86-CFP was still fully mobile. Furthermore the monomeric CD86 showed a relative CFP–YFP expression ratio independent mobility. This result led to the conclusion that extra- and intracellularly labeled CD86 did not interact with each other and exist as a monomer. The mobility of the covalent dimer CD28 however was depending on the relative CFP-YFP expression ratio and was in good agreement with theoretically expected values for a dimer. The application of the dual-color FRAP approach for the investigation of interactions between ß1- and ß2-adrenergic receptors showed differences between both receptor subtypes. ß1-AR exhibited a specific transient interaction, however ß2-AR existed as stable higher order oligomers. The transient interaction between ß1-AR and the stable higher order oligomerization of ß2-AR were not only observed in HEK 293T cells but also in neonatal rat cardiac myocytes and at 37°C. Furthermore the activation state of the respective receptor had no influence on the extent of the interaction. Between ß1- and ß2-AR only a weak and unstable hetero-interaction was observed using the dual-color FRAP approach. In order to control if a direct interaction between the adrenergic receptors is occurring the BRET method was applied. Using BRET a direct interaction between ß2-AR was observed, but it was not possible to distinguish between dimers and higher order oligomers. For ß1-AR a specific energy transfer occurred at higher YFP-Rluc expression ratios. At lower expression ratios the signal was in the unspecific range. Also the investigation of hetero-interactions between ß1- and ß2-AR revealed no clear conclusion about a specific interaction between both receptor subtypes. KW - Dimerisierung KW - FRAP KW - GPCR KW - ß-adrenerge Rezeptoren KW - BRET KW - FRAP KW - GPCR KW - ß-adrenergic Receptors KW - BRET Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39712 ER - TY - JOUR A1 - Gmach, Philipp A1 - Bathe-Peters, Marc A1 - Telugu, Narasimha A1 - Miller, Duncan C. A1 - Annibale, Paolo T1 - Fluorescence spectroscopy of low-level endogenous β-adrenergic receptor expression at the plasma membrane of differentiating human iPSC-derived cardiomyocytes JF - International Journal of Molecular Sciences N2 - The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the β\(_1\)- and β\(_2\)-adrenergic receptors (β\(_{1/2}\)-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of β-ARs in adult CMs. KW - GPCR KW - β-adrenergic receptors KW - hiPSC-CM KW - cardiomyocyte KW - fluorescence correlation spectroscopy KW - FCS KW - fluorescence KW - CRISPR/Cas9 KW - differentiation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288277 SN - 1422-0067 VL - 23 IS - 18 ER - TY - THES A1 - Godbole, Amod Anand T1 - A new paradigm in GPCR signaling at the trans-Golgi network of thyroid cells T1 - Ein neues Model der GPCR Signaltransduktion am trans-Golgi-Netzwerk von Schilddrüsenzellen N2 - Whereas G-protein coupled receptors (GPCRs) have been long believed to signal through cyclic AMP exclusively at cell surface, our group has previously shown that GPCRs not only signal at the cell surface but can also continue doing so once internalized together with their ligands, leading to persistent cAMP production. This phenomenon, which we originally described for the thyroid stimulating hormone receptor (TSHR) in thyroid cells, has been observed also for other GPCRs. However, the intracellular compartment(s) responsible for such persistent signaling and its consequences on downstream effectors were insufficiently characterized. The aim of this study was to follow by live-cell imaging the trafficking of internalized TSHRs and other involved signaling proteins as well as to understand the consequences of signaling by internalized TSHRs on the downstream activation of protein kinase A (PKA). cAMP and PKA activity was measured in real-time in living thyroid cells using FRET-based sensors Epac1-camp and AKAR2 respectively. The results suggest that TSH co-internalizes with its receptor and that the internalized TSH/TSHR complexes traffic retrogradely to the trans-Golgi network (TGN). This study also provides evidence that these internalized TSH/TSHR complexes meet an intracellular pool of Gs proteins in sorting endosomes and in TGN and activate it there, as visualized in real-time using a conformational biosensor nanobody, Nb37. Acute Brefeldin A-induced Golgi collapse hinders the retrograde trafficking of TSH/TSHR complexes, leading to reduced cAMP production and PKA signaling. BFA pretreatment was also able to attenuate CREB phosphorylation suggesting that an intact Golgi/TGN organisation is essential for an efficient cAMP/PKA signaling by internalized TSH/TSHR complexes. Taken together this data provides evidence that internalized TSH/TSHR complexes meet and activate Gs proteins in sorting endosomes and at the TGN, leading to a local activation of PKA and consequently increased CREB activation. These findings suggest unexpected functions for receptor internalization, with major pathophysiological and pharmacological implications. N2 - G-Protein-gekoppelte Rezeptoren sind nur in Eukaryonten vorhandeln und bilden die größte und diverseste Familie von Zellmembranrezeptoren. Sie reagieren auf eine vielfältige Gruppe von Stimuli die verschiedene Effektoren aktivieren und damit nachgelagerte Signalkaskaden auslösen, die letztlich entscheidend für die Zellphysiologie sind. Die Regelung der Ligand-vermittelten Signaltransduktion wird hauptsächlich durch die Desensibilisierung des GPCR mittels Dephosphorylierung (katalysiert durch GRK) und zusätzlich durch Internalisierung des GPCR gesteuert. Die Annahme, dass GPCRs für cAMP nur an der Zellmembran signalisieren und nicht mehr sobald sie in die Zelle internalisiert wurden, konnte durch wegweisende unabhängige Forschung an GPCRs im Besonderen an TSHR und PTHR geändert werden. So konnte gezeigt werden, dass sie für cAMP nicht nur an der Zellmembran signalisieren, sondern auch, wenn sie in intrazelluläre Zellkompartimente internalisiert wurde. Dieses Phänomen („sustained signaling“ hier „anhaltende Signalisierung“) wurde seitdem für andere GPCRs (z.B. 2-AR, V2R und LHR) beschrieben. Aber die Zellkompartimente wurden für nachhaltige intrazelluläre Signale nicht ausreichend charakterisiert. Das Ziel dieser Arbeit war es die Bewegung und die dynamische Natur der möglichen signalisierenden Kompartimente mittels „real-time TIRF“-Mikroskopie und die Signalisierung unter Verwendung von „real-time FRET“ in primären Maus Schilddrüsenzellen zu untersuchen. Die vorliegende Arbeit berichtet, dass TSH/TSHR Komplexe internalisieren und ein signifikanter Teil, welcher vom Retromer Komplex angeführt wird, gelangt über den retrograden (rückwärts gerichteten) Transport in das trans-Golgi-Netzwerk (TGN). Diese TSH/TSHR-Komplexe treffen nicht in den frühen Endosomen auf die Gs-Proteine, sondern in den „Sortierer Endosomen“ und in dem TGN. Ein direkter Beweis für Gs Protein Aktivierung und Signaltransduktion am TGN und in Sortierer Endosomen konnte mittels des nanobody Nb37, einem spezifischen Biosensor für das aktive Gs Protein, erbracht werden. Es konnte gezeigt werden, dass die Sequestrierung von Nb37 an diesen Kompartimenten ein szintillierendes Verhalten in Zeit und Raum zeigt. Die vorliegende Arbeit zeigt, dass die katalytische Untereinheit der PKA am Golgi/TGN angereichert ist. Die Behandlung mit Brefeldin A führt zum Verlust dieser PKA Lokalisation am Golgi. Die Beschädigung und Reorganisation des TGN durch Brefeldin A führt zu a) einer abgeschwächten cAMP Reaktion b) einer dreiphasigen PKA Reaktion charakterisiert durch eine schnelle erste Phase, eine langsame (deutlich abgeschwächte) zweite Phase und eine verzögerte dritte Phase und schließlich c) einer abgeschwächte CREB Phosphorylierung. Es gibt Anzeichen dafür, dass die Reorganisation des TGN Kompartimente betrifft, die verantwortlich für intrazelluläre cAMP- und PKA-Signalisierung sind. Zusammenfassend lässt sich sagen, dass das TGN eines der Kompartimente ist, das für die anhaltende TSHR-Signalisierung verantwortlich ist. KW - G-Protein gekoppelte Rezeptoren KW - GPCR KW - thyroid stimulating hormone receptor KW - trans-Golgi network KW - Signaltransduktion KW - Golgi-Apparat KW - Schilddrüse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147159 ER - TY - THES A1 - Hart, Stefan T1 - Characterisation of the molecular mechanisms of EGFR signal transactivation in human cancer T1 - Charakterisierung der molekularen Mechanismen der EGFR-Transaktivierung in humanen Tumoren. N2 - In a variety of established tumour cell lines, but also in primary mammary epithelial cells metalloprotease-dependent transactivation of the EGFR, and EGFR characteristic downstream signalling events were observed in response to stimulation with physiological concentrations of GPCR agonists such as the mitogens LPA and S1P as well as therapeutically relevant concentrations of cannabinoids. Moreover, this study reveals ADAM17 and HB-EGF as the main effectors of this mechanism in most of the cancer cell lines investigated. However, depending on the cellular context and GPCR agonist, various different members of the ADAM family are selectively recruited for specific ectodomain shedding of proAR and/or proHB-EGF and subsequent EGFR activation. Furthermore, biological responses induced by LPA or S1P such as migration in breast cancer and HNSCC cells, depend on ADAM17 and proHB-EGF/proAR function, respectively, suggesting that highly abundant GPCR ligands may play a role in tumour development and progression. Moreover, EGFR signal transactivation could be identified as the mechanistic link between cannabinoid receptors and the activation of mitogen activated protein kinases (MAPK) ERK1/2 as well as pro-survival Akt/PKB signalling. Depending on the cellular context, cannabinoid-induced signal cross-communication was mediated by shedding of proAmphiregulin and/or proHB-EGF by ADAM17. Most importantly, our data show that concentrations of THC comparable to those detected in the serum of patients after THC administration accelerate proliferation of cancer cells instead of apoptosis and thereby may contribute to cancer progression in patients. N2 - Im Rahmen dieser Arbeit wurde gezeigt, dass in verschiedenen etablierten Tumorzelllinien, aber auch in primären Brustepithelzellen sowohl physiologische Konzentrationen von GPCR Liganden, wie z.B. den Mitogenen LPA und S1P, als auch therapeutische Konzentrationen von Cannabinoiden zur metalloproteaseabhängigen Aktivierung des EGFRs führen. Abhängig von diesem Mechanismus konnte die Aktivierung der mitogenen Ras/MAPK-Kaskade als auch des antiapoptotischen Akt/PKB Signalweges beobachtet werden. Untersuchungen mit Hilfe der siRNA-Technik oder dominant-negativen Konstrukten identifizierten ADAM17 sowie den EGFR-Liganden HB-EGF als wichtigste Komponenten dieses Signalweges. Abhängig vom Zellsystem konnte aber auch eine Beteiligung anderer Mitglieder der ADAM Familie sowie des EGFR-Liganden Amphiregulin nachgewiesen werden. Weiterhin konnte in dieser Arbeit gezeigt werden, dass die durch LPA und S1P induzierten biologische Prozesse, wie z.B. die Migration in Brustkrebs- oder HNSCC-Zellen, vollständig von der Aktivität von ADAM17 und HB-EGF/AR abhängig waren. Außerdem konnte die ADAM17- und HB-EGF/AR-vermittelte EGFR-Transaktivierung als Bindeglied zwischen Cannabinoid-Rezeptoren und MAPK- und Akt-Aktivierung sowie erhöhter Zellproliferation identifiziert werden. Die Ergebnisse dieser Arbeit unterstreichen die Rolle der EGFR Signaltransaktivierung und dadurch induzierter biologischer Antworten wie Zellmigration oder –proliferation in Tumorzellen, und sollten darüber hinaus zu einer Neubewertung der Krebstherapie mit Cannabinoiden führen. KW - Epidermaler Wachstumsfaktor-Rezeptor KW - Krebs KW - Signaltransduktion KW - EGFR KW - GPCR KW - Transaktivierung KW - Krebs KW - Metalloprotease KW - EGFR KW - GPCR KW - transactivation KW - cancer KW - metalloprotease Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10067 ER - TY - THES A1 - İşbilir, Ali T1 - Localization and Trafficking of CXCR4 and CXCR7 T1 - Lokalisation und Verteilung von CXCR4 und CXCR7 N2 - G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins, and are the master components that translate extracellular stimulus into intracellular signaling, which in turn modulates key physiological and pathophysiological processes. Research within the last three decades suggests that many GPCRs can form complexes with each other via mechanisms that are yet unexplored. Despite a number of functional evidence in favor of GPCR dimers and oligomers, the existence of such complexes remains controversial, as different methods suggest diverse quaternary organizations for individual receptors. Among various methods, high resolution fluorescence microscopy and imagebased fluorescence spectroscopy are state-of-the-art tools to quantify membrane protein oligomerization with high precision. This thesis work describes the use of single molecule fluorescence microscopy and implementation of two confocal microscopy based fluorescence fluctuation spectroscopy based methods for characterizing the quaternary organization of two class A GPCRs that are important clinical targets: the C-X-C type chemokine receptor 4 (CXCR4) and 7 (CXCR7), or recently named as the atypical chemokine receptor 3 (ACKR3). The first part of the results describe that CXCR4 protomers are mainly organized as monomeric entities that can form transient dimers at very low expression levels allowing single molecule resolution. The second part describes the establishment and use of spatial and temporal brightness methods that are based on fluorescence fluctuation spectroscopy. Results from this part suggests that ACKR3 forms clusters and surface localized monomers, while CXCR4 forms increasing amount of dimers as a function of receptor density in cells. Moreover, CXCR4 dimerization can be modulated by its ligands as well as receptor conformations in distinct manners. Further results suggest that antagonists of CXCR4 display distinct binding modes, and the binding mode influences the oligomerization and the basal activity of the receptor: While the ligands that bind to a “minor” subpocket suppress both dimerization and constitutive activity, ligands that bind to a distinct, “major” subpocket only act as neutral antagonists on the receptor, and do not modulate neither the quaternary organization nor the basal signaling of CXCR4. Together, these results link CXCR4 dimerization to its density and to its activity, which may represent a new strategy to target CXCR4. N2 - G protein-gekoppelte Rezeptoren (GPCRs) bilden die größte Klasse der Membranproteine und sind entscheidend an der Übersetzung extrazellulärer Reize in intrazelluläre Signale beteiligt, welche wiederum unzählige physiologische und pathophysiologische Prozesse regulieren. Die Forschungsergebnisse der letzten drei Jahrzehnte deutet darauf hin, dass viele GPCRs mittels noch weitgehend unbekannter Mechanismen miteinander Komplexe bilden können. Trotz vielfältiger Beobachtungen, die für die funktionelle Relevanz von GPCR-Dimeren und -Oligomeren sprechen, ist deren Existenz dennoch weiterhin umstritten, vor allem da verschiedene Methoden auf unterschiedliche quaternäre Anordnungen derselben Rezeptoren hinweisen. Von den derzeit verfügbaren Methoden zur genauen Untersuchung der GPCR Dimerisierung/-Oligomerisierung, stellen die hochauflösende Fluoreszenzmikroskopie sowie die bildbasierte Fluoreszenzspektroskopie die Techniken der Wahl dar. Die hier vorliegende Arbeit beschreibt die Anwendung der Einzelmolekül Fluoreszenzmikroskopie sowie zweier konfokalmikroskopischer Methoden zur Messung der Fluoreszenzfluktuation, mit deren Hilfe die quaternäre Anordnung zweier klinisch hochattraktiver Klasse A GPCRs untersucht wurde: der C-X-C Typ Chemokinrezeptoren 4 (CXCR4) und 7 (CXCR7), letzterer auch bekannt als atypischer Chemokinrezeptor 3 (ACKR3). Der erste Teil der Ergebnisse legt anhand Untersuchungen an einzelnen Molekülen dar, dass CXCR4 überwiegend in Form monomerer Einheiten auftritt, die bei sehr geringen Expressionsleveln kurzlebige Dimere bilden können. Der zweite Teil beschreibt die Etablierung und Anwendung räumlicher und zeitlicher Brillanzmethoden, die auf der spektroskopischen Untersuchung der Fluoreszenzfluktuation beruhen. Die Ergebnisse dieses Abschnitts deuten darauf hin, dass ACKR3 sowohl in Form beständiger Rezeptor-Cluster, und monomere Einheit an der Oberfläche lebender Zellen auftritt. CXCR4 ist bei zunehmender Rezeptordichte hingegen vermehrt in Form von Dimeren zu finden. Zudem kann die Dimerisierung von CXCR4 von dessen Liganden, als auch von der drei dimensionalen Anordnung der Rezeptorteilstrukturen (Rezeptorkonformation)auf unterschiedliche Weise reguliert werden. Die weiteren Ergebnisse legen nahe, dass Antagonisten auf unterschiedliche Weise an CXCR4 binden können und dass der jeweilige Bindungsmodus entscheidend für den Einfluss des Liganden auf Oligomerisierung und basale Aktivität von CXCR4 ist: Während Liganden, die an eine kleinere Untertasche des Rezeptors binden, sowohl die Dimerisierung als auch die Basalaktivität unterdrücken, fungieren Verbindungen, die an eine andere, größere Untertasche binden, lediglich als neutrale Antagonisten und zeigen keinerlei Einfluss auf die quaternäre Anordnung und basale Aktivität von CXCR4. Zusammenfassend verknüpfen diese Ergebnisse CXCR4-Dimerisierung mit der Rezeptordichte in Zellen und seiner Aktivität, was die Grundlage für neue Strategien zur phamakologischen Modulation von CXCR4 darstellen könnte. KW - G-Protein gekoppelter Rezeptor KW - GPCR KW - Receptor KW - Chemokine KW - oligomerization KW - CXCR4 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249378 ER -