TY - JOUR A1 - Gmach, Philipp A1 - Bathe-Peters, Marc A1 - Telugu, Narasimha A1 - Miller, Duncan C. A1 - Annibale, Paolo T1 - Fluorescence spectroscopy of low-level endogenous β-adrenergic receptor expression at the plasma membrane of differentiating human iPSC-derived cardiomyocytes JF - International Journal of Molecular Sciences N2 - The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the β\(_1\)- and β\(_2\)-adrenergic receptors (β\(_{1/2}\)-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of β-ARs in adult CMs. KW - GPCR KW - β-adrenergic receptors KW - hiPSC-CM KW - cardiomyocyte KW - fluorescence correlation spectroscopy KW - FCS KW - fluorescence KW - CRISPR/Cas9 KW - differentiation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288277 SN - 1422-0067 VL - 23 IS - 18 ER - TY - THES A1 - Nemec, Katarina T1 - Modulation of parathyroid hormone 1 receptor (PTH1R) signaling by receptor activity-modifying proteins (RAMPs) T1 - Regulierung der Signalübertragung des Parathormon 1-Rezeptors (PTH1R) durch Rezeptoraktivitäts-modifizierende Proteine (RAMPs) N2 - The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions. Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive. This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation. I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors. These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR function and advanced drug design. N2 - G Protein-gekoppelte Rezeptoren (GPCRs) bilden die größte und pharmakologisch wichtigste Familie von Zelloberflächenrezeptoren, die zahlreiche (patho-)physiologische Prozesse im menschlichen Körper steuern. GPCRs übertragen während des Rezeptoraktivierungsprozesses extrazelluläre Signale in das Zellinnere, wo durch die extrazelluläre Stimulation Konformationsänderungen des Rezeptorkerns auslöst und die Bindung intrazellulärer Bindungspartner – G Proteine, G Protein-gekoppelte Rezeptorkinase und Arrestine - ermöglicht. Es handelt sich also um einen kritischen Prozess in der Signaltransduktion, der durch einige endogene Moleküle wie Ionen, Lipide oder andere Proteine moduliert werden kann und Auswirkungen auf nachgeschaltete Signalkaskaden hat. GPCRs bilden gewebeabhängige Oligomere mit ihren interagierenden Partnern, Rezeptor-Aktivitäts-modifizierende Proteinen (RAMPs), ubiquitär exprimierten Membranproteinen. Bekannt ist, dass sie die Ligandenbindung, die G- Protein-Kopplung, die nachgeschaltete Signalisierung, das Trafficking und das Recycling einiger GPCRs modulieren. Ihre Rolle im kritischsten Prozess der Signaltransduktion - der Rezeptoraktivierung - wurde jedoch nur begrenzt erforscht. Anhand des physiologisch und therapeutisch wichtigen Parathormon-Rezeptors (PTH1R), einem GPCR der Klasse B, wurden die Modulationseffekte von RAMPs auf den Prozess der Rezeptoraktivierung und ihre Folgen für die nachgeschaltete Signalübertragung analysiert. Hierzu wurden verschiedene optische Biosensoren zur Messung der Aktivierung des PTH1R und seiner Signalkaskade entwickelt und in verschiedenen Versuchsanordnungen eingesetzt, mit dem Ziel einen holistischen Blick auf die Interaktion zwischen PTH1R und RAMPs und ihre funktionellen Auswirkungen zu erhalten. Die Interaktion zwischen PTH1R und RAMPs erwies sich als besonders ausgeprägt für RAMP2, und RAMP2 zeigte eine spezifische allosterische Modulation der PTH1R-Konformation, sowohl im basalen als auch im Liganden- aktivierten Zustand. Ein einzigartiger voraktivierter oder (meta-stabiler) Zustand ermöglichte eine schnellere Rezeptoraktivierung auf Liganden-spezifische Weise. Außerdem beeinflusste RAMP2 die G Protein- und Nicht-G Protein-vermittelte Signalübertragung indem es die PTH-vermittelte Gi3-Signalempfindlichkeit und die Kinetik der cAMP-Akkumulation modulierte. Weiterhin erhöhte RAMP2 die Menge der β-Arrestin2-Rekrutierung an PTH1R auf Liganden-spezifische Weise. Dies könnte mit einer erhöhten zytosolischen ERK-Menge zusammenhängen, die hat sich von der nukleären ERK-Phosphorylierung unterscheidet. Um einen molekularen Mechanismus für die vorgestellten Ergebnisse vorzuschlagen, wurden mehrere strukturelle Modelle entwickelt und analysiert. Diese Arbeit liefert den Beweis, dass RAMP die GPCR-Aktivierung mit funktionellen Auswirkungen auf die zelluläre Signalübertragung reguliert. Die Ergebnisse sollten im Zusammenhang mit zellspezifischen Koexpressionsmustern interpretiert werden und können zur Entwicklung von fortschrittlichen Therapeutika positiv beitragen. Da GPCRs praktisch alle Zellfunktionen koordinieren und seit jeher wichtigen Angriffspunkten für Medikamente sind, tragen die vorgestellten Erkenntnisse zum universellen Verständnis der molekularen Mechanismen bei, die den menschlichen Körper orchestrieren. KW - G-Protein gekoppelter Rezeptor KW - GPCR KW - RAMP KW - PTH1R KW - FRET KW - BRET KW - pharmacology KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Förster Resonanz Energie Transfer Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288588 ER - TY - THES A1 - İşbilir, Ali T1 - Localization and Trafficking of CXCR4 and CXCR7 T1 - Lokalisation und Verteilung von CXCR4 und CXCR7 N2 - G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins, and are the master components that translate extracellular stimulus into intracellular signaling, which in turn modulates key physiological and pathophysiological processes. Research within the last three decades suggests that many GPCRs can form complexes with each other via mechanisms that are yet unexplored. Despite a number of functional evidence in favor of GPCR dimers and oligomers, the existence of such complexes remains controversial, as different methods suggest diverse quaternary organizations for individual receptors. Among various methods, high resolution fluorescence microscopy and imagebased fluorescence spectroscopy are state-of-the-art tools to quantify membrane protein oligomerization with high precision. This thesis work describes the use of single molecule fluorescence microscopy and implementation of two confocal microscopy based fluorescence fluctuation spectroscopy based methods for characterizing the quaternary organization of two class A GPCRs that are important clinical targets: the C-X-C type chemokine receptor 4 (CXCR4) and 7 (CXCR7), or recently named as the atypical chemokine receptor 3 (ACKR3). The first part of the results describe that CXCR4 protomers are mainly organized as monomeric entities that can form transient dimers at very low expression levels allowing single molecule resolution. The second part describes the establishment and use of spatial and temporal brightness methods that are based on fluorescence fluctuation spectroscopy. Results from this part suggests that ACKR3 forms clusters and surface localized monomers, while CXCR4 forms increasing amount of dimers as a function of receptor density in cells. Moreover, CXCR4 dimerization can be modulated by its ligands as well as receptor conformations in distinct manners. Further results suggest that antagonists of CXCR4 display distinct binding modes, and the binding mode influences the oligomerization and the basal activity of the receptor: While the ligands that bind to a “minor” subpocket suppress both dimerization and constitutive activity, ligands that bind to a distinct, “major” subpocket only act as neutral antagonists on the receptor, and do not modulate neither the quaternary organization nor the basal signaling of CXCR4. Together, these results link CXCR4 dimerization to its density and to its activity, which may represent a new strategy to target CXCR4. N2 - G protein-gekoppelte Rezeptoren (GPCRs) bilden die größte Klasse der Membranproteine und sind entscheidend an der Übersetzung extrazellulärer Reize in intrazelluläre Signale beteiligt, welche wiederum unzählige physiologische und pathophysiologische Prozesse regulieren. Die Forschungsergebnisse der letzten drei Jahrzehnte deutet darauf hin, dass viele GPCRs mittels noch weitgehend unbekannter Mechanismen miteinander Komplexe bilden können. Trotz vielfältiger Beobachtungen, die für die funktionelle Relevanz von GPCR-Dimeren und -Oligomeren sprechen, ist deren Existenz dennoch weiterhin umstritten, vor allem da verschiedene Methoden auf unterschiedliche quaternäre Anordnungen derselben Rezeptoren hinweisen. Von den derzeit verfügbaren Methoden zur genauen Untersuchung der GPCR Dimerisierung/-Oligomerisierung, stellen die hochauflösende Fluoreszenzmikroskopie sowie die bildbasierte Fluoreszenzspektroskopie die Techniken der Wahl dar. Die hier vorliegende Arbeit beschreibt die Anwendung der Einzelmolekül Fluoreszenzmikroskopie sowie zweier konfokalmikroskopischer Methoden zur Messung der Fluoreszenzfluktuation, mit deren Hilfe die quaternäre Anordnung zweier klinisch hochattraktiver Klasse A GPCRs untersucht wurde: der C-X-C Typ Chemokinrezeptoren 4 (CXCR4) und 7 (CXCR7), letzterer auch bekannt als atypischer Chemokinrezeptor 3 (ACKR3). Der erste Teil der Ergebnisse legt anhand Untersuchungen an einzelnen Molekülen dar, dass CXCR4 überwiegend in Form monomerer Einheiten auftritt, die bei sehr geringen Expressionsleveln kurzlebige Dimere bilden können. Der zweite Teil beschreibt die Etablierung und Anwendung räumlicher und zeitlicher Brillanzmethoden, die auf der spektroskopischen Untersuchung der Fluoreszenzfluktuation beruhen. Die Ergebnisse dieses Abschnitts deuten darauf hin, dass ACKR3 sowohl in Form beständiger Rezeptor-Cluster, und monomere Einheit an der Oberfläche lebender Zellen auftritt. CXCR4 ist bei zunehmender Rezeptordichte hingegen vermehrt in Form von Dimeren zu finden. Zudem kann die Dimerisierung von CXCR4 von dessen Liganden, als auch von der drei dimensionalen Anordnung der Rezeptorteilstrukturen (Rezeptorkonformation)auf unterschiedliche Weise reguliert werden. Die weiteren Ergebnisse legen nahe, dass Antagonisten auf unterschiedliche Weise an CXCR4 binden können und dass der jeweilige Bindungsmodus entscheidend für den Einfluss des Liganden auf Oligomerisierung und basale Aktivität von CXCR4 ist: Während Liganden, die an eine kleinere Untertasche des Rezeptors binden, sowohl die Dimerisierung als auch die Basalaktivität unterdrücken, fungieren Verbindungen, die an eine andere, größere Untertasche binden, lediglich als neutrale Antagonisten und zeigen keinerlei Einfluss auf die quaternäre Anordnung und basale Aktivität von CXCR4. Zusammenfassend verknüpfen diese Ergebnisse CXCR4-Dimerisierung mit der Rezeptordichte in Zellen und seiner Aktivität, was die Grundlage für neue Strategien zur phamakologischen Modulation von CXCR4 darstellen könnte. KW - G-Protein gekoppelter Rezeptor KW - GPCR KW - Receptor KW - Chemokine KW - oligomerization KW - CXCR4 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249378 ER - TY - THES A1 - Liu, Ruiqi T1 - Dynamic regulation of the melanocortin 4 receptor system in body weight homeostasis and reproductive maturation in fish T1 - Dynamische Regulation des Melanocortin-4-Rezeptor Systems bei der Körpergewichtshomöostase und der Fortpflanzungsreifung bei Fischen N2 - Puberty is an important period of life with physiological changes to enable animals to reproduce. Xiphophorus fish exhibit polymorphism in body size, puberty timing, and reproductive tactics. These phenotypical polymorphisms are controlled by the Puberty (P) locus. In X. nigrensis and X. multilineatus, the P locus encodes the melanocortin 4 receptor (Mc4r) with high genetic polymorphisms. Mc4r is a member of the melanocortin receptors, belonging to class A G-protein coupled receptors. The Mc4r signaling system consists of Mc4r, the agonist Pomc (precursor of various MSH and of ACTH), the antagonist Agrp and accessory protein Mrap2. In humans, MC4R has a role in energy homeostasis. MC4R and MRAP2 mutations are linked to human obesity but not to puberty. Mc4rs in X. nigrensis and X. multilineatus are present in three allele classes, A, B1 and B2, of which the X-linked A alleles express functional receptors and the male-specific Y-linked B alleles encode defective receptors. Male body sizes are correlated with B allele type and B allele copy numbers. Late-maturing large males carry B alleles in high copy number while early-maturing small males carry B alleles in low copy number or only A alleles. Cell culture co-expression experiments indicated that B alleles may act as dominant negative receptor mutants on A alleles. In this study, the main aim was to biochemically characterize the mechanism of puberty regulation by Mc4r in X. nigrensis and X. multilineatus, whether it is by Mc4r dimerization and/or Mrap2 interaction with Mc4r or other mechanisms. Furthermore, Mc4r in X. hellerii (another swordtail species) and medaka (a model organism phylogenetically close to Xiphophorus) were investigated to understand if the investigated mechanisms are conserved in other species. In medaka, the Mc4r signaling system genes (mc4r, mrap2, pomc, agrp1) are expressed before hatching, with agrp1 being highly upregulated during hatching and first feeding. These genes are mainly expressed in adult brain, and the transcripts of mrap2 co-localize with mc4r indicating a function in modulating Mc4r signaling. Functional comparison between wild-type and mc4r knockout medaka showed that Mc4r knockout does not affect puberty timing but significantly delays hatching due to the retarded embryonic development of knockout medaka. Hence, the Mc4r system in medaka is involved in regulation of growth rather than puberty. In Xiphophorus, expression co-localization of mc4r and mrap2 in X. nigrensis and X. hellerii fish adult brains was characterized by in situ hybridization. In both species, large males exhibit strikingly high expression of mc4r while mrap2 shows similar expression level in the large and small male and female. Differently, X. hellerii has only A-type alleles indicating that the puberty regulation mechanisms evolved independently in Xiphophorus genus. Functional analysis of Mrap2 and Mc4r A/B1/B2 alleles of X. multilineatus showed that increased Mrap2 amounts induce higher cAMP response but EC50 values do not change much upon Mrap2 co-expression with Mc4r (expressing only A allele or A and B1 alleles). A and B1 alleles were expressed higher in large male brains, while B2 alleles were only barely expressed. Mc4r A-B1 cells have lower cAMP production than Mc4r A cells. Together, this indicates a role of Mc4r alleles, but not Mrap2, in puberty onset regulation signaling. Interaction studies by FRET approach evidenced that Mc4r A and B alleles can form heterodimers and homodimers in vitro, but only for a certain fraction of the expressed receptors. Single-molecule colocalization study using super-resolution microscope dSTORM confirmed that only few Mc4r A and B1 receptors co-localized on the membrane. Altogether, the species-specific puberty onset regulation in X. nigrensis and X. multilineatus is linked to the presence of Mc4r B alleles and to some extent to its interaction with A allele gene products. This is reasoned to result in certain levels of cAMP signaling which reaches the dynamic or static threshold to permit late puberty in large males. In summary, puberty onset regulation by dominant negative effect of Mc4r mutant alleles is a special mechanism that is found so far only in X. nigrensis and X. multilineatus. Other Xiphophorus species obviously evolved the same function of the pathway by diverse mechanisms. Mc4r in other fish (medaka) has a role in regulation of growth, reminiscent of its role in energy homeostasis in humans. The results of this study will contribute to better understand the biochemical and physiological functions of the Mc4r system in vertebrates including human. N2 - Die Pubertät ist ein wichtiger Lebensabschnitt mit physiologischen Veränderungen, die die Fortpflanzung von Tieren ermöglichen. Xiphophorus Fische weisen einen Polymorphismus in Bezug auf Körpergröße, Pubertätszeit und Fortpflanzungstaktik auf. Diese phänotypischen Polymorphismen werden durch den Pubertäts (P) Locus gesteuert. In X. nigrensis und X. multilineatus kodiert der P Locus den Melanocortin-4-Rezeptor (Mc4r) mit hohen genetischen Polymorphismen. Mc4r gehört zu den Melanocortin-Rezeptoren, die zur Klasse A der G-Protein-gekoppelten Rezeptoren gehören. Das Mc4r-Signalsystem besteht aus Mc4r, dem Agonisten Pomc (Prohormon der verschiedenen MSH und des ACTH), dem Antagonisten Agrp und dem akzessorischen Protein Mrap2. Beim Menschen spielt MC4R eine Rolle bei der Energiehomöostase. MC4R und MRAP2 Mutationen stehen im Zusammenhang mit menschlicher Fettleibigkeit, jedoch nicht mit der Pubertät. Mc4rs in X. nigrensis und X. multilineatus sind in drei Allelklassen vorhanden, A, B1 und B2, von denen die X-chromosomalen A Allele funktionelle Rezeptoren exprimieren und die spezifischen männlichen Y-chromosomalen B Allele für defekte Rezeptoren kodieren. Die männliche Körpergröße korreliert mit dem B Alleltyp und der Kopienzahl des B Allels. Spätreife große Männchen tragen B Allele in hoher Kopienzahl, während frühreife kleine Männchen B Allele in niedriger Kopienzahl oder nur A Allele tragen. Koexpressions-Experimente in Zellkultur zeigten, dass B Allele als dominant negative Mutanten-Rezeptor auf A Allele wirken können. In dieser Studie war das Hauptziel die biochemische Charakterisierung des Mechanismus der Pubertätsregulation durch Mc4r in X. nigrensis und X. multilineatus. Dabei wurde untersucht, ob die Regulation durch eine Mc4r Dimerisierung und/oder Mrap2 Interaktion mit Mc4r oder durch andere Mechanismen erfolgt. Des Weiteren wurde Mc4r in X. hellerii (einer anderen Schwertträger Art) und Medaka (ein phylogenetisch naheliegender Modellorganismus von Xiphophorus) untersucht, um zu verstehen, ob die untersuchten Mechanismen in anderen Arten konserviert sind. In Medaka werden die Gene des Mc4r Signalsystems (mc4r, mrap2, pomc, agrp1) vor dem Schlüpfen exprimiert, wobei agrp1 während des Schlüpfens und der ersten Fütterung stark hochreguliert wird. Im adulten Medaka werden diese Gene hauptsächlich im Gehirn exprimiert und die Transkripte von mrap2 und mc4r kolokalisieren, was auf eine Funktion bei der Modulation der Mc4r-Signaltransduktion hinweist. Ein funktionaler Vergleich zwischen Wildtyp- und mc4r-Knockout Medaka zeigte, dass der Mc4r-Knockout das Pubertäts-Timing nicht beeinflusst, das Schlüpfen jedoch aufgrund der verzögerten embryonalen Entwicklung von Knockout-Medaka signifikant verzögert. Daher ist das Mc4r System in Medaka eher an der Regulation des Wachstums als an der Pubertät beteiligt. Bei Xiphophorus wurde die Lokalisierung von mc4r und mrap2 in erwachsenen Gehirnen von X. nigrensis und X. hellerii durch in situ Hybridisierung charakterisiert. Bei beiden Spezies zeigen große Männchen eine auffallend hohe Expression von mc4r, während mrap2 bei großen und kleinen Männchen und Weibchen ein ähnliches Expressionsniveau zeigt. Im Gegensatz dazu weist X. hellerii nur Allele vom A-Typ auf, was darauf hinweist, dass sich die Pubertätsregulationsmechanismen in dem Genus Xiphophorus unabhängig voneinander entwickelt haben. Die funktionelle Analyse der Mrap2 und Mc4r A/B1/B2 Allele von X. multilineatus zeigte, dass erhöhte Mrap2-Mengen eine höhere cAMP-Antwort induzieren, die EC50-Werte sich jedoch bei der Mrap2-Coexpression mit Mc4r nicht wesentlich ändern (nur A Allel oder A und B1 Allele). A und B1 Allele wurden in großen männlichen Gehirnen höher exprimiert, während B2 Allele kaum exprimiert wurden. Mc4r A-B1 Zellen haben eine geringere cAMP-Produktion als Mc4r A Zellen. Zusammengenommen deutet dies auf eine Rolle von Mc4r-Allelen, jedoch nicht von Mrap2, bei der Signalgebung zur Regulation des Pubertätsbeginns hin. Interaktionsstudien mit den FRET-Methoden zeigten, dass Mc4r A und B Allele in vitro Heterodimere und Homodimere bilden können, jedoch nur für einen bestimmten Anteil der exprimierten Rezeptoren. Die Einzelmolekül-co-lokalisierungsstudie unter Verwendung von der hochauflösenden Mikroskopiemethode dSTORM bestätigte, dass nur wenige Mc4r A und B1 Rezeptoren auf der Membran co-lokalisiert sind. Insgesamt ist die artspezifische Regulation des Pubertätsbeginns bei X. nigrensis und X. multilineatus auf das Vorhandensein von Mc4r B Allelen und teilweise auf deren Interaktion mit Genprodukten des A Allels zurückzuführen. Dies wird dadurch begründet, dass ein bestimmtes cAMP Niveau (statische oder dynamische Schwelle) erreicht werden muss, um die Pubertät einzuleiten. In großen Männchen wird dieses cAMP Niveau später erreicht und so die Pubertät später eingeleitet. Zusammenfassend ist die Regulation des Pubertätsbeginns durch die dominante negative Wirkung von mutierten Mc4r Allelen ein spezieller Mechanismus, der bisher nur bei X. nigrensis und X. multilineatus zu finden ist. Andere Xiphophorus Arten haben offensichtlich durch andere Mechanismen die gleiche Funktion des Signalwegs entwickelt. In anderen Fischen (Medaka) spielt Mc4r eine Rolle bei der Regulation des Wachstums und erinnert an seine Rolle bei der Energie-Homöostase beim Menschen. Die Ergebnisse dieser Studie werden dazu beitragen, die biochemischen und physiologischen Funktionen des Mc4r-Systems bei Wirbeltieren, einschließlich Menschen, besser zu verstehen. KW - Japankärpfling KW - Mc4r KW - Schwertkärpfling KW - Pubertät KW - Molekularbiologie KW - GPCR KW - Mrap2 KW - Medaka KW - Xiphophorus KW - Puberty KW - Growth Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206536 ER - TY - THES A1 - Bathe-Peters, Marc T1 - Spectroscopic approaches for the localization and dynamics of β\(_1\)- and β\(_2\)-adrenergic receptors in cardiomyocytes T1 - Spektroskopieansätze zur Bestimmung der Lokalisation und Dynamiken von β\(_1\)- und β\(_2\)-Adrenozeptoren in Kardiomyozyten N2 - In the heart the β\(_1\)-adrenergic receptor (AR) and the β\(_2\)-AR, two prototypical G protein-coupled receptors (GPCRs), are both activated by the same hormones, namely adrenaline and noradrenaline. Both receptors couple to stimulatory G\(_s\) proteins, mediate an increase in cyclic adenosine monophosphate (cAMP) and influence the contractility and frequency of the heart upon stimulation. However, activation of the β\(_1\)-AR, not the β\(_2\)-AR, lead to other additional effects, such as changes in gene transcription resulting in cardiac hypertrophy, leading to speculations on how distinct effects can arise from receptors coupled to the same downstream signaling pathway. In this thesis the question of whether this distinct behavior may originate from a differential localization of these two receptors in adult cardiomyocytes is addressed. Therefore, fluorescence spectroscopy tools are developed and implemented in order to elucidate the presence and dynamics of these endogenous receptors at the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. This allows the visualization of confined localization and diffusion of the β\(_2\)-AR to the T-tubular network at endogenous expression. In contrast, the β\(_1\)-AR is found diffusing at both the outer plasma membrane and the T-tubules. Upon overexpression of the β\(_2\)-AR in adult transgenic cardiomyocytes, the receptors experience a loss of this compartmentalization and are also found at the cell surface. These data suggest that distinct signaling and functional effects can be controlled by specific cell surface targeting of the receptor subtypes. The tools at the basis of this thesis work are a fluorescent adrenergic antagonist in combination of fluorescence fluctuation spectroscopy to monitor the localization and dynamics of the lowly expressed adrenergic receptors. Along the way to optimizing these approaches, I worked on combining widefield and confocal imaging in one setup, as well as implementing a stable autofocus mechanism using electrically tunable lenses. N2 - Im Herzen werden der β\(_1\)-adrenerge Rezeptor (AR) und der β\(_2\)-AR, zwei prototypische GPCR, durch die Hormone Adrenalin und Noradrenalin aktiviert. Dabei interagieren beide Rezeptoren mit dem stimulatorischen G\(_s\) Protein, bewirken eine Erhöhung des cyclischen Adenosinmonophosphates (cAMP) und beeinflussen die Kontraktionskraft und Frequenz des Herzens nach einem Stimulus. Jedoch hat die Aktivierung des β\(_1\)-ARs, nicht des β\(_2\)-ARs, auch weitere Effekte, wie z.B. Veränderungen in der Transkription von Genen. Dies wiederum führt zu Spekulationen, wie solch unterschiedliche Effekte von Rezeptoren hervorgerufen werden können, die gleiche Signalwege bedienen. In dieser Arbeit wird untersucht, ob dieses unterschiedliche Verhalten durch eine ungleiche Verteilung dieser beiden Rezeptoren in adulten Kardiomyozyten hervorgerufen werden könnte. Dazu wird die Lokalisation und die Dynamik dieser endogenen Rezeptoren in der Plasmamembran sowie im T-tubulären Netzwerk von intakten adulten Kardiomyozyten, unter Entwicklung und Verwendung hochsensitiver Fluoreszenzspektroskopiemethoden, bestimmt. Dies ermöglicht die örtliche und dynamische Eingrenzung des β\(_2\)-adrenergen Rezeptors unter endogener Expression ausschließlich auf das T-tubuläre Netzwerk. Dementgegen stellt sich heraus, dass sich der β\(_1\)-adrenerge Rezeptor ubiquitär auf der äußeren Membran und den T-Tubuli befindet und diffundiert. In β\(_2\)-AR überexprimierenden transgenen Kardiomyozyten hingegen werden diese Kompartments nicht beibehalten und es findet eine Umverteilung der Rezeptoren, auch unter Einbezug der Zelloberfläche, statt. Diese Daten können stärker darauf hindeuten, dass einige Rezeptorsubtypen sich gezielt und spezifisch bestimmte Zelloberflächen aussuchen, um somit ihre verschiedenen Signale und funktionären Effekte erzeugen zu können. Zu den Techniken, die in dieser Arbeit die Bestimmung der Lokalisation und der Dynamiken der niedrig exprimierten adrenergen Rezeptoren zulassen, gehört die Anwendung von Fluoreszenzspektroskopiemethoden in Kombination mit einem fluoreszierenden β-adrenergen Antagonisten. Weitere Techniken, die im Rahmen dieser Arbeit entwickelt wurden und in weiterführenden Studien aufschlussreiche Erkenntnisse liefern könnten, umfassen die Entwicklung eines Setups aus einer Kombination aus Weitfeld- und Konfokalmikroskopie und die Implementierung eines stabilen Autofokus mit Hilfe einer elektrisch veränderbaren Linse. KW - G-Protein gekoppelte Rezeptoren KW - Beta-Adrenozeptor KW - Kardiomyozyt KW - Fluoreszenzmikroskopie KW - Fluoreszenzkorrelationsspektroskopie KW - Fluorescence KW - Fluorescence Microscopy KW - G Protein-Coupled Receptor KW - Autofocus KW - Microscopy KW - Beta-Adrenergic Receptor KW - Cardiomyocyte KW - Fluorescence Correlation Spectroscopy KW - FCS KW - GPCR Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258126 ER - TY - THES A1 - Balakrishnan, Ashwin T1 - Fast molecular mobility of β\(_2\)-adrenergic receptor revealed by time-resolved fluorescence spectroscopy T1 - Schnelle molekulare Beweglichkeit des β\(_2\)-adrenergen Rezeptors durch zeitaufgelöste Fluoreszenzspektroskopie N2 - G-protein- coupled receptors (GPCRs) are the largest family of membrane confined receptors and they transduce ligand binding to downstream effects. Almost 40% of the drugs in the world target GPCRs due to their function, albeit knowing less about their activation. Understanding their dynamic behaviour in basal and activated state could prove key to drug development in the future. GPCRs are known to exhibit complex molecular mobility patterns. A plethora of studies have been and are being conducted to understand the mobility of GPCRs. Due to limitations of imaging and spectroscopic techniques commonly used, the relevant timescales are hard to access. The most commonly used techniques are electron paramagnetic resonance or double electronelectron resonance, nuclear magnetic resonance, time-resolved fluorescence, single particle tracking and fluorescence recovery after photobleaching. Among these techniques only fluorescence has the potential to probe live cells. In this thesis, I use different time-resolved fluorescence spectroscopic techniques to quantify diffusion dynamics / molecular mobility of β2-adrenergic receptor (β2-AR) in live cells. The thesis shows that β2-AR exhibits mobility over an exceptionally broad temporal range (nanosecond to second) that can be linked to its respective physiological scenario. I explain how β2-AR possesses surprisingly fast lateral mobility (~10 μm²/s) associated with vesicular transport in contrast to the prior reports of it originating from fluorophore photophysics and free fluorophores in the cytosol. In addition, β2-AR has rotational mobility (~100 μs) that makes it conform to the Saffman-Delbrück model of membrane diffusion unlike earlier studies. These contrasts are due to the limitations of the methodologies used. The limitations are overcome in this thesis by using different time-resolved fluorescence techniques of fluorescence correlation spectroscopy (FCS), time-resolved anisotropy (TRA) and polarisation resolved fullFCS (fullFCS). FCS is limited to microsecond to the second range and TRA is limited to the nanosecond range. fullFCS complements the two techniques by covering the blind spot of FCS and TRA in the microsecond range. Finally, I show how ligand stimulation causes a decrease in lateral mobility which could be a hint at cluster formation due to internalisation and how β2-AR possesses a basal oligomerisation that does not change on activation. Thus, through this thesis, I show how different complementary fluorescence techniques are necessary to overcome limitations of each technique and to thereby elucidate functional dynamics of GPCR activation and how it orchestrates downstream signalling. N2 - G¬Protein¬gekoppelte Rezeptoren (GPCRs) sind die größte Familie der Membran¬Rezeptoren und durch Bindung von Liganden leiten sie extrazlluläre Signal in das Innere der Zelle weiter. Fast 40% der Medikamente auf der Welt zielen aufgrund ihrer Funktion auf GPCRs ab, obwohl man relative wenig über ihre Aktivierung weiß. Das Verständnis ihres dynamischen Verhaltens im basalen und aktivierten Zustand könnte sich in Zukunft als Schlüssel zur Medikamentenentwicklung erweisen. GPCRs sind dafür bekannt, dass sie komplexe molekulare Bewegungsmuster aufweisen. Eine Fülle von Studien wurden und werden durchgeführt, um die Beweglichkeit von GPCRs zu verstehen. Aufgrund der Einschränkungen der gängigen bildgebenden und spektroskopischen Techniken sind die relevanten Zeitskalen nur schwer messbar. Die am häufigsten verwendeten Techniken sind die paramagnetische Elektronenresonanz oder die Doppel¬Elektron¬Elektron¬Resonanz, die magnetische Kernresonanz, die zeitaufgelöste Fluoreszenz, die Einzelpartikelverfolgung und die Fluoreszenzwiederherstellung nach Photobleichung. Unter diesen Techniken haben nur die Fluoreszenz¬basierten Techniken das Potential, lebende Zellen zu untersuchen. In dieser Arbeit werden verschiedene zeitaufgelöste fluoreszenzspektroskopische Techniken zur Quantifizierung der Diffusionsdynamik oder molekularen Mobilität des β2¬adrenergen Rezeptors (β2¬AR) in lebenden Zellen verwendet. Diese Arbeit zeigt, dass β2-AR eine Beweglichkeit über einen außergewöhnlich breiten, zeitlichen Bereich (Nanosekunde bis Sekunde) aufweist, der mit dem jeweiligen physiologischen Szenario verknüpft werden kann. Es wird gezeigt, wie β2¬AR eine überraschend schnelle, laterale Bewegung (~10 μm²/s) besitzt, welche mit vesikulärem Transport in Verbindung gebracht werden kann. Im Gegensatz zu früheren Berichten, wonach die beobachtete Komponente von der Photophysik der Fluorophore und freien Fluorophoren im Zytosol abstammt. Zusätzlich weist β2¬AR eine Rotationsbeweglichkeit (~100 μs) auf, welche es ¬ im Gegensatz zu früheren Studien ¬ dem Saffman¬Delbrück¬Modell der Membrandiffusion zuordnen lässt. Dieser Unterschied ist auf die Beschränkungen der verwendeten Techniken zurückzuführen. Die Einschränkungen werden in dieser Arbeit durch die Verwendung verschiedener zeitaufgelöster Fluoreszenztechniken überwunden, z. B. der Fluoreszenzkorrelationsspektroskopie (FCS) im Bereich von mehreren hundert Nanosekunden bis Sekunden, der zeitaufgelösten Anisotropie (TRA) im Nanosekundenbereich und der polarisationsaufgelösten FullFCS (FullFCS), die die zeitlich Lücke zwischen FCS und TRA schließt. Zuletzt wird eine Abnahme der lateralen Beweglichkeit durch Ligandenstimulation gezeigt, was ein Hinweis auf Clusterbildung aufgrund von Internalisierung sein könnte, und dass β2¬AR eine basale Oligomerisierung aufweist, die sich bei Aktivierung nicht ändert. Zusammenfassend kann man sagen, dass verschiedene komplementäre Fluoreszenztechniken notwendig sind, um die Einschränkungen der einzelnen Techniken zu überwinden und dadurch die funktionelle Dynamik der GPCR¬Aktivierung und deren Bedeutung für die nachgeschaltete Signalübertragung aufzuklären. KW - Fluorescence correlation spectroscopy KW - GPCR KW - time-resolved anisotropy KW - adrenergic receptor KW - homoFRET Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250856 ER - TY - THES A1 - Anton, Selma T1 - Characterization of cAMP nanodomains surrounding the human Glucagon-like peptide 1 receptor using FRET-based reporters T1 - Charakterisierung der Rezeptor-assoziierten cAMP Nanodomänen des humanen Glucagon-like peptide 1 Rezeptors mittels FRET-basierter Sensoren N2 - Cyclic adenosine monophosphate (cAMP), the ubiquitous second messenger produced upon stimulation of GPCRs which couple to the stimulatory GS protein, orchestrates an array of physiological processes including cardiac function, neuronal plasticity, immune responses, cellular proliferation and apoptosis. By interacting with various effector proteins, among others protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), it triggers signaling cascades for the cellular response. Although the functional outcomes of GSPCR-activation are very diverse depending on the extracellular stimulus, they are all mediated exclusively by this single second messenger. Thus, the question arises how specificity in such responses may be attained. A hypothesis to explain signaling specificity is that cellular signaling architecture, and thus precise operation of cAMP in space and time would appear to be essential to achieve signaling specificity. Compartments with elevated cAMP levels would allow specific signal relay from receptors to effectors within a micro- or nanometer range, setting the molecular basis for signaling specificity. Although the paradigm of signaling compartmentation gains continuous recognition and is thoroughly being investigated, the molecular composition of such compartments and how they are maintained remains to be elucidated. In addition, such compartments would require very restricted diffusion of cAMP, but all direct measurements have indicated that it can diffuse in cells almost freely. In this work, we present the identification and characterize of a cAMP signaling compartment at a GSPCR. We created a Förster resonance energy transfer (FRET)-based receptor-sensor conjugate, allowing us to study cAMP dynamics in direct vicinity of the human glucagone-like peptide 1 receptor (hGLP1R). Additional targeting of analogous sensors to the plasma membrane and the cytosol enables assessment of cAMP dynamics in different subcellular regions. We compare both basal and stimulated cAMP levels and study cAMP crosstalk of different receptors. With the design of novel receptor nanorulers up to 60nm in length, which allow mapping cAMP levels in nanometer distance from the hGLP1R, we identify a cAMP nanodomain surrounding it. Further, we show that phosphodiesterases (PDEs), the only enzymes known to degrade cAMP, are decisive in constraining cAMP diffusion into the cytosol thereby maintaining a cAMP gradient. Following the discovery of this nanodomain, we sought to investigate whether downstream effectors such as PKA are present and active within the domain, additionally studying the role of A-kinase anchoring proteins (AKAPs) in targeting PKA to the receptor compartment. We demonstrate that GLP1-produced cAMP signals translate into local nanodomain-restricted PKA phosphorylation and determine that AKAP-tethering is essential for nanodomain PKA. Taken together, our results provide evidence for the existence of a dynamic, receptor associated cAMP nanodomain and give prospect for which key proteins are likely to be involved in its formation. These conditions would allow cAMP to exert its function in a spatially and temporally restricted manner, setting the basis for a cell to achieve signaling specificity. Understanding the molecular mechanism of cAMP signaling would allow modulation and thus regulation of GPCR signaling, taking advantage of it for pharmacological treatment. N2 - G Protein gekoppelte Rezeptoren (GPCRs) stellen eine große und sehr vielfältige Familie an Membranproteinen dar, deren primäre Funktion die Signalübertragung von extrazellulären Stimuli in intrazelluläre Signale ist. Dank ihrer breiten Expression im gesamten menschlichen Körper regulieren sie unterschiedliche zelluläre Prozesse und damit deren physiologische Funktion, unter anderem die Sinnesempfindung, zelluläre Kommunikation und Neurotransmission. GPCRs stehen im Zusammenhang mit unterschiedlichen Erkrankungen wie Herzinsuffizienz, Krebs, neurologischen Funktionsstörungen und diverser metabolischer Krankheiten, weswegen sie als Ziele („Targets“) zur Behandlung verschiedener Erkrankungen erforscht und genutzt werden. Aufgrund ihrer Expression auf der Zelloberfläche sind sie leicht zugänglich, und die Diversität ihrer Liganden begünstigt zusätzlich ihre Nutzung als pharmakologische Targets. Heutzutage vermitteln bereits 30% aller weltweit zugelassenen Arzneistoffe ihre Wirkung an GPCRs. GPCRs üben ihre Funktion aus, indem sie hauptsächlich an G Proteine binden, welche wiederum die Produktion sogenannter second messenger in Gang setzen. cAMP ist das Hauptsignalmolekül der Rezeptoren, welche an das stimulatorische GS Protein koppeln. cAMP überträgt hunderte ankommende Signale in einer hochspezifischen Weise, indem es an unterschiedliche Effektorproteine bindet, welche sich in bestimmten zellulären Regionen befinden. Dadurch koordiniert dieses Signalmolekül eine Vielzahl zellulärer Prozesse, angefangen bei der Regulierung von Ionenkanalaktivität über die Kontraktilität glatter- und quergestreifter Muskulatur bis hin zur Genexpression, Zellproliferation und Apoptose. Durch die pleiotropen Effekte, welche durch cAMP reguliert werden, stellt sich die Frage, wie GS-gekoppelte Rezeptoren Signalspezifität erreichen, obwohl sie ihre Funktion durch dieses eine Signalmolekül ausführen. Ursprünglich ging man von einer uneingeschränkten Diffusion und dadurch homogenen Verteilung von cAMP in der Zelle aus. Diese Vorstellung ist jedoch nicht mit der Signalisierungsspezifität von GPCRs vereinbar, da unter diesen Umständen cAMP unselektiv all seine Effektorproteine in der gesamten Zelle aktivieren könnte. Daher entstand die Hypothese der cAMP-Kompartimentierung, wobei die Zelle lokal begrenzte Bereiche mit hohen oder niedrigen cAMP Konzentrationen umfassen würde. Jedoch gab es bisher keinerlei Beweise für die Existenz und die molekulare Zusammensetzung mutmaßlicher Domänen. Folglich setzten wir uns als Ziel, hochkonzentrierte cAMP-Kompartimente in der Zelle zu lokalisieren, ihre räumliche Dimension aufzuklären und ihre Rolle zur Realisierung zellulärer Signalisierungsspezifität zu ermitteln. Im Rahmen der vorliegenden Studie setzten wir einen Förster resonance energy transfer (FRET)-basierten cAMP Sensor ein, fusionierten ihn mit dem humanen glucagone-like peptide 1 Rezeptor (hGLP1R) als Prototyp eines GS-koppelnden Rezeptors, um cAMP am Ursprung des Signals zu messen. Mittels dieser Sensoren weisen wir eine Rezeptor-umgebende begrenzte cAMP Domäne nach, welche eine erhöhte cAMP Konzenztration aufweist (Figure ‎3.10). Bei Stimulation des Rezeptors mit GLP1 Konzenztrationen beginnend bei 10 fM entsteht eine Rezeptordomäne mit lokal erhöhten cAMP Konzentrationen, welche getrennt von Plasmamembran und Cytosol ist. Wir zeigen, dass das hGLP1R-Kompartiment geschützt ist vor cAMP Signalen, welche an weiteren, unabhängigen GS-gekoppelten Rezeptoren ihren Ursprung haben (Figure ‎3.11). Um die räumliche Dimension dieser Domäne zu untersuchen, verwendeten wir Nanolinker der Länge 30- und 60 nm als Abstandhalter zwischen Rezeptor und Sensor (Figure ‎3.12) und zeigen dabei, dass sich die Domäne über eine Länge von 60 Nanometern erstreckt, wobei ein abnehmender cAMP-Gradient erkennbar ist. Weiterhin beweisen wir, dass Phosphodiesterasen (PDEs) Schlüsselfaktoren für die Bildung des cAMP-Gradienten um den Rezeptor herum sind, indem sie die Diffusion ins Cytosol beschränken (Figure ‎3.13). Darüber hinaus zeigen wir (Figure ‎3.15), dass Rezeptor-spezifische cAMP Signale PKA-Phosphorylierung in der Rezeptordomäne auslösen und, dass AKAPs elementar für nanodomänen PKA-Aktivität sind, wohingegen die cytosolische PKA-Phosphorylierung unabhängig von AKAP-Targeting der PKA ist (Figure ‎3.16). Zusammenfassend beweisen unsere Ergebnisse die Existenz einer Rezeptor-umgebenden Nanodomäne mit erhöhten cAMP Spiegeln eines GS-gekoppelten Rezeptors. Zeitgleiche Studien in unserer Gruppe zeigen, dass cAMP in der Zelle weitgehend gebunden vorliegt und diffusionslimitiert ist. Dies stellt den Nachweis für eine eingeschränkte Diffusion als molekulare Voraussetzung für die Bildung von Signalkompartimenten dar. Wir gehen davon aus, dass unsere Ergebnisse ein Ausgangspunkt für die Aufklärung von Rezeptoren als Quelle für Signalkompartimente darstellen, jedoch bedarf es weiterer Studien, um die präzise molekulare Zusammensetzung und die beteiligten Proteine dieser Signaldomäne zu untersuchen. Das Grundverständnis der Signalisierungskaskaden auf molekularer Ebene könnte es uns ermöglichen, die zellulären Reaktionen zu manipulieren, um eine Fehlfunktion der Signalisierung in erkrankten Zellen wiederherzustellen. Da der hGLP1R entscheidend für Aufrechterhaltung ausgeglichener Blutglucosespiegel ist, würde die Erfassung der molekularen Details der kompartimentalisierten Signalübertragung die Feinabstimmung der Rezeptorsignale ermöglichen, um ihn als spezifisches Target zur Behandlung von Diabetes Mellitus einzusetzen. KW - FRET KW - cAMP KW - compartments KW - GPCR Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190695 ER - TY - JOUR A1 - Maiellaro, Isabella A1 - Lohse, Martin J. A1 - Kitte, Robert J. A1 - Calebiro, Davide T1 - cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons JF - Cell Reports N2 - The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons. KW - cAMP KW - synaptic plasticity KW - PDE KW - octopamine KW - FRET KW - active zone KW - dunce KW - GPCR Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162324 VL - 17 IS - 5 ER - TY - THES A1 - Dolles, Dominik T1 - Development of Hybrid GPCR Ligands: Photochromic and Butyrylcholinesterase Inhibiting Human Cannabinoid Receptor 2 Agonists T1 - Entwicklung von hybriden GPCR Liganden: Photochrome und Butyrylcholinesterase-inhibierende Cannabinoid Rezeptor 2 Agonisten N2 - While life expectancy increases worldwide, treatment of neurodegenerative diseases such as AD becomes a major task for industrial and academic research. Currently, a treatment of AD is only symptomatical and limited to an early stage of the disease by inhibiting AChE. A cure for AD might even seem far away. A rethinking of other possible targets is therefore necessary. Addressing targets that can influence AD even at later stages might be the key. Even if it is not possible to find a cure for AD, it is of great value for AD patients by providing an effective medication. The suffering of patients and their families might be relieved and remaining years may be spent with less symptoms and restrictions. It was shown that a combination of hCB2R agonist and BChE inhibitor might exactly be a promising approach to combat AD. In the previous chapters, a first investigation of dual-acting compounds that address both hCB2R and BChE was illustrated (figure 6.1). A set of over 30 compounds was obtained by applying SARs from BChE inhibitors to a hCB2R selective agonist developed by AstraZeneca. In a first in vitro evaluation compounds showed selectivity over hCB1R and AChE. Further investigations could also prove agonism and showed that unwanted off-target affinity to hMOP receptor could be designed out. The development of a homology model for hCB2R (based on a novel hCB1R crystal) could further elucidate the mode of action of the ligand binding. Lastly, first in vivo studies showed a beneficial effect of selected dual-acting compounds regarding memory and cognition. Since these first in vivo studies mainly aim for an inhibition of the BChE, it should be the aim of upcoming projects to proof the relevance of hCB2R agonism in vivo as well. In addition, pharmacokinetic as well as solubility studies may help to complete the overall picture. Currently, hybrid-based dual-acting hCB2R agonists and selective BChE inhibitors are under investigation in our lab. First in vitro evaluations showed improved BChE inhibition and selectivity over AChE compared to tacrine.78 Future in vitro and in vivo studies will clarify their usage as drug molecules with regard to hepatotoxicity and blood-brain barrier penetration. Since the role of hCB2R is not yet completely elucidated, the use of photochromic toolcompounds becomes an area of interest. These tool-compounds (and their biological effect) can be triggered upon irradiation with light and thus help to investigate time scales and ligand binding. A set of 5-azobenzene benzimidazoles was developed and synthesized. In radioligand binding studies, affinity towards hCB2R could be increased upon irradiation with UV-light (figure 6.2). This makes the investigated compounds the first GPCR ligands that can be activated upon irradiation (not vice versa). The aim of upcoming research will be the triggering of a certain intrinsic activity by an “efficacy-switch”. For this purpose, several attempts are currently under investigation: an introduction of an azobenzene moiety at the 2-position of the benzimidazole core already led to a slight difference in efficacy upon irradiation with UV light. Another approach going on in our lab is the development of hCB1R switches based on the selective hCB1R inverse agonist rimonabant. First in vitro results are not yet available (figure 6.3). N2 - Durch die weltweit steigende Lebenserwartung rückt die Behandlung von neurodegenerativen Krankheiten, wie der Alzheimer’schen Krankheit, immer mehr in den Fokus der industriellen und akademischen Forschung. Momentan erfolgt die Behandlung der Alzheimer’schen Krankheit durch die Blockade der AChE nur symptomatisch und in einem Frühstadium. Eine Heilung scheint dabei in weiter Ferne zu liegen, weshalb ein Umdenken nach neuen Ansätzen stattfinden sollte. Der Schlüssel könnte darin liegen, dass man biologischen Funktionen adressiert, die den Verlauf der Alzheimer’schen Krankheit auch in einem späteren Stadium beeinflussen. Selbst wenn eine Heilung in absehbarer Zeit unmöglich bleibt, ist es für die betroffenen Patienten eine erhebliche Erleichterung auf eine effektive Medikation zurückgreifen zu können. Das Leid der Patienten und ihrer Familien könnte dadurch gelindert und die verbleibenden Lebensjahre ohne Symptome und Einschränkungen genossen werden. In den vorangegangenen Kapiteln wurde bereits gezeigt, dass die Kombination aus einem hCB2R Agonisten und einem BChE Hemmer genau diesen vielversprechenden Ansatz verfolgt. Ein erster Entwicklungsansatz von dual-aktiven hCB2R Agonisten / BChE Hemmern wurde in den Kapiteln 3 und 4 ausführlich dargestellt (Abb. 7.1). Ein Set von 30 verschiedenen Verbindungen wurde synthetisiert, indem die Erkenntnisse der Struktur-Wirkungsbeziehungen von anderen BChE Hemmern auf einen von AstraZeneca entwickelten selektiven hCB2R Agonisten angewendet wurden. Erste in vitro Untersuchungen zeigten eine hohe Selektivität gegenüber hCB1R und AChE auf. Desweiteren verhielten sich alle getesteten Substanzen wie Agonisten. Nachdem ausgewählte Substanzen auf ihre „off-target“ Wechselwirkung mit dem hMOP Rezeptor untersucht wurden, konnten diese strukturellen Merkmale in nachfolgenden Entwicklungsbemühungen berücksichtigt werden. Die Entwicklung eines hCB2R Homologiemodells (basierend auf einer erst kürzlich veröffentlichten hCB1R Kristallstruktur) lieferte wertvolle Informationen zum Bindemodus und der Wirkweise der Liganden am Rezeptor. Schlussendlich konnte in einer ersten in vivo Studie bewiesen werden, dass ausgewählte dual-aktive Substanzen eine positive Auswirkung auf das Gedächtnis und die kognitiven Eigenschaften haben. Da diese in vivo Untersuchungen hauptsächlich die Hemmung der BChE berücksichtigen, wäre es sinnvoll, in zukünftigen Studien den Einfluss der hCB2R Agonisten zu untersuchen. Pharmakokinetik- und Löslichkeitsstudien könnten zudem helfen, das Gesamtbild zu komplettieren. Im Moment befinden sich auch dual-aktive hCB2R Agonisten / BChE Hemmer in der Entwicklung, die den Hybrid-Ansatz verfolgen. Erste in vitro Untersuchungen dazu ergaben vielversprechende Ergebnisse mit einer guten Selektivität gegenüber AChE und einer erhöhten Hemmung der BChE verglichen mit Tacrin.78 Es wird Gegenstand zukünftiger in vitro und in vivo Untersuchungen sein, herauszufinden, ob sich diese Hybride mit Hinblick auf Hepatotoxizität und Blut-Hirnschrankengängigkeit als Wirkstoffe eignen. Da die Rolle des hCB2R noch nicht komplett erforscht ist, erfreut sich die Entwicklung von sog. „tool-compounds“ großen wissenschaftlichen Interesses. Durch die Bestrahlung mit Licht können diese „tool-compounds“ (und ihr nachgeschalteter biologischer Effekt) gesteuert werden. Eine genauere Untersuchung von Zeitskalen und Ligandbindung an den Rezeptor wird dadurch ermöglicht. Ein Set von 5-Azobenzolbenzimidazolen wurde zu diesem Zwecke entwickelt und synthetisiert. In Radioligandbindungsstudien konnte gezeigt werden, dass sich die Affinität gegenüber dem hCB2R durch die Bestrahlung mit UV-Licht erhöhen lässt (Abb. 7.2). Diese Eigenschaft macht die entwickelten Substanzen zu den ersten GPCR-Liganden, die durch Licht aktiviert werden können (nicht umgekehrt wie bei den bisher beschriebenen photochromen GPCR-Liganden). Ziel zukünftiger Forschungsbemühungen wird die Steuerung einer bestimmten intrinsischen Aktivität / Effekts durch die Bestrahlung mit Licht sein. Zu diesem Zwecke werden aktuell mehrere Herangehensweisen untersucht: die Einführung eines Azobenzol-Strukturelements an Position 2 des Benzimidazol-Grundgerüsts zeigte in ersten in vitro Untersuchungen bereits Unterschiede bei Bestrahlung mit UV-Licht. Eine weitere Herangehensweise ist die Entwicklung von „Photo-Schaltern“ auf Basis von Rimonabant, einem selektiven hCB1R inversen Agonisten. Hier stehen erste in vitro Ergebnisse jedoch noch aus (Abb. 7.3). KW - Ligand KW - Hybrid KW - GPCR KW - Cannabinoid Receptor KW - Butyrylcholinesterase KW - Agonist KW - Agonist KW - Cholinesterase KW - G-Protein gekoppelte Rezeptor KW - Hybrid GPCR Ligands Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163445 ER - TY - THES A1 - Godbole, Amod Anand T1 - A new paradigm in GPCR signaling at the trans-Golgi network of thyroid cells T1 - Ein neues Model der GPCR Signaltransduktion am trans-Golgi-Netzwerk von Schilddrüsenzellen N2 - Whereas G-protein coupled receptors (GPCRs) have been long believed to signal through cyclic AMP exclusively at cell surface, our group has previously shown that GPCRs not only signal at the cell surface but can also continue doing so once internalized together with their ligands, leading to persistent cAMP production. This phenomenon, which we originally described for the thyroid stimulating hormone receptor (TSHR) in thyroid cells, has been observed also for other GPCRs. However, the intracellular compartment(s) responsible for such persistent signaling and its consequences on downstream effectors were insufficiently characterized. The aim of this study was to follow by live-cell imaging the trafficking of internalized TSHRs and other involved signaling proteins as well as to understand the consequences of signaling by internalized TSHRs on the downstream activation of protein kinase A (PKA). cAMP and PKA activity was measured in real-time in living thyroid cells using FRET-based sensors Epac1-camp and AKAR2 respectively. The results suggest that TSH co-internalizes with its receptor and that the internalized TSH/TSHR complexes traffic retrogradely to the trans-Golgi network (TGN). This study also provides evidence that these internalized TSH/TSHR complexes meet an intracellular pool of Gs proteins in sorting endosomes and in TGN and activate it there, as visualized in real-time using a conformational biosensor nanobody, Nb37. Acute Brefeldin A-induced Golgi collapse hinders the retrograde trafficking of TSH/TSHR complexes, leading to reduced cAMP production and PKA signaling. BFA pretreatment was also able to attenuate CREB phosphorylation suggesting that an intact Golgi/TGN organisation is essential for an efficient cAMP/PKA signaling by internalized TSH/TSHR complexes. Taken together this data provides evidence that internalized TSH/TSHR complexes meet and activate Gs proteins in sorting endosomes and at the TGN, leading to a local activation of PKA and consequently increased CREB activation. These findings suggest unexpected functions for receptor internalization, with major pathophysiological and pharmacological implications. N2 - G-Protein-gekoppelte Rezeptoren sind nur in Eukaryonten vorhandeln und bilden die größte und diverseste Familie von Zellmembranrezeptoren. Sie reagieren auf eine vielfältige Gruppe von Stimuli die verschiedene Effektoren aktivieren und damit nachgelagerte Signalkaskaden auslösen, die letztlich entscheidend für die Zellphysiologie sind. Die Regelung der Ligand-vermittelten Signaltransduktion wird hauptsächlich durch die Desensibilisierung des GPCR mittels Dephosphorylierung (katalysiert durch GRK) und zusätzlich durch Internalisierung des GPCR gesteuert. Die Annahme, dass GPCRs für cAMP nur an der Zellmembran signalisieren und nicht mehr sobald sie in die Zelle internalisiert wurden, konnte durch wegweisende unabhängige Forschung an GPCRs im Besonderen an TSHR und PTHR geändert werden. So konnte gezeigt werden, dass sie für cAMP nicht nur an der Zellmembran signalisieren, sondern auch, wenn sie in intrazelluläre Zellkompartimente internalisiert wurde. Dieses Phänomen („sustained signaling“ hier „anhaltende Signalisierung“) wurde seitdem für andere GPCRs (z.B. 2-AR, V2R und LHR) beschrieben. Aber die Zellkompartimente wurden für nachhaltige intrazelluläre Signale nicht ausreichend charakterisiert. Das Ziel dieser Arbeit war es die Bewegung und die dynamische Natur der möglichen signalisierenden Kompartimente mittels „real-time TIRF“-Mikroskopie und die Signalisierung unter Verwendung von „real-time FRET“ in primären Maus Schilddrüsenzellen zu untersuchen. Die vorliegende Arbeit berichtet, dass TSH/TSHR Komplexe internalisieren und ein signifikanter Teil, welcher vom Retromer Komplex angeführt wird, gelangt über den retrograden (rückwärts gerichteten) Transport in das trans-Golgi-Netzwerk (TGN). Diese TSH/TSHR-Komplexe treffen nicht in den frühen Endosomen auf die Gs-Proteine, sondern in den „Sortierer Endosomen“ und in dem TGN. Ein direkter Beweis für Gs Protein Aktivierung und Signaltransduktion am TGN und in Sortierer Endosomen konnte mittels des nanobody Nb37, einem spezifischen Biosensor für das aktive Gs Protein, erbracht werden. Es konnte gezeigt werden, dass die Sequestrierung von Nb37 an diesen Kompartimenten ein szintillierendes Verhalten in Zeit und Raum zeigt. Die vorliegende Arbeit zeigt, dass die katalytische Untereinheit der PKA am Golgi/TGN angereichert ist. Die Behandlung mit Brefeldin A führt zum Verlust dieser PKA Lokalisation am Golgi. Die Beschädigung und Reorganisation des TGN durch Brefeldin A führt zu a) einer abgeschwächten cAMP Reaktion b) einer dreiphasigen PKA Reaktion charakterisiert durch eine schnelle erste Phase, eine langsame (deutlich abgeschwächte) zweite Phase und eine verzögerte dritte Phase und schließlich c) einer abgeschwächte CREB Phosphorylierung. Es gibt Anzeichen dafür, dass die Reorganisation des TGN Kompartimente betrifft, die verantwortlich für intrazelluläre cAMP- und PKA-Signalisierung sind. Zusammenfassend lässt sich sagen, dass das TGN eines der Kompartimente ist, das für die anhaltende TSHR-Signalisierung verantwortlich ist. KW - G-Protein gekoppelte Rezeptoren KW - GPCR KW - thyroid stimulating hormone receptor KW - trans-Golgi network KW - Signaltransduktion KW - Golgi-Apparat KW - Schilddrüse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147159 ER -