TY - THES A1 - Schneider, Matthias T1 - Characterisation of Metalloprotease-mediated EGFR Signal Transactivation after GPCR Stimulation T1 - Charakterisierung der EGFR Signaltransaktivierung nach GPCR Stimulation N2 - In the context of metalloprotease-mediated transactivation of the epidermal growth factor receptor, different monoclonal antibodies against ADAM17 / TACE were characterized for their ability to block the sheddase. Activity of some of them was observed at doses between 2µg/mL and 10µg/mL. Kinetic analyses showed their activity starting at around 30 minutes. In cellular assays performed with the antibodies, especially upon treatment of cells with sphingosine-1-phosphate a reduction in proliferation was observed with some candidates. Moreover this study provides potential new roles for ß-Arrestins. Their involvement in the triple membrane-passing signal pathway of EGFR transactivation was shown. Furthermore, in overexpressing cellular model systems, an interaction between ADAM17 and ß-Arrestin1 could be observed. Detailed analysis discovered that phosphorylation of ß-Arrestin1 is crucial for this interaction. Additionally, the novel mechanism of UV-induced EGFR transactivation was extended to squamous cell carcinoma. The mechanism happens in a dose dependent manner and requires a metalloprotease to shed the proligand Amphiregulin. The involvement of both ADAM9 and ADAM17, being the metalloproteases responsible for this cleavage, was shown for SCC9 cells. N2 - Im Rahmen dieser Arbeit wurden verschiedene monoklonale Antikörper gegen ADAM17 / TACE im Kontext der Metalloprotease-vermittelten Transaktivierung des Epidermalen Wachstumsfaktors auf ihre Fähigkeit hin untersucht, die Proteaseaktivität zu unterdrücken. Einige von Ihnen zeigten inhibitorische Aktivität bei Konzentrationen zwischen 2µg/ml und 10µg/ml. Die Untersuchung der Zeitabhängigkeit ihrer Wirkungsweise ergab eine Aktivität ab 30 Minuten Vorinkubation. In zellulären Versuchen konnte eine Verminderung der Proliferation besonders nach Stimulation mit Sphingosin-1-Phosphat gezeigt werden. Darüber hinaus konnten möglich neue Funktionen von ß-Arrestinen gezeigt werden. Eine Beteiligung am „triple membrane-passing“ Signalwegs der Transaktivierung des Epidermalen Wachstumsfaktors wurde dargestellt. Zudem wurde eine Interaktion von ß-Arrestin1 und ADAM17 in überexprimierenden Zellsystemen gezeigt. Detaillierte Analysen belegten, dass die Phosphorylierung von ß-Arrestin1 eine notwendige Voraussetzung dafür ist. Weiterhin wurde der neue Mechanismus der UV-vermittelten Aktivierung des epidermalen Wachstumsfaktors auf Plattenephithelkarzinom-Zellen ausgeweitet. Er findet in einer dosisabhängigen Form statt und bedarf einer Metalloprotease zum Aktivieren des Liganden Amphiregulin. Sowohl ADAM9 als auch ADAM17 wurden als die verantwortlichen Metalloproteasen in den untersuchten SCC9 Zellen ermittelt. KW - Epidermaler Wachstumsfaktor-Rezeptor KW - G-Protein gekoppelte Rezeptoren KW - Metalloprotease KW - Krebs KW - EGF Rezeptor KW - Transaktivierung KW - GPCR KW - UV KW - EGFR Transactivation KW - Metalloprotease KW - GPCR KW - Cancer KW - UV Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65105 ER - TY - THES A1 - Hart, Stefan T1 - Characterisation of the molecular mechanisms of EGFR signal transactivation in human cancer T1 - Charakterisierung der molekularen Mechanismen der EGFR-Transaktivierung in humanen Tumoren. N2 - In a variety of established tumour cell lines, but also in primary mammary epithelial cells metalloprotease-dependent transactivation of the EGFR, and EGFR characteristic downstream signalling events were observed in response to stimulation with physiological concentrations of GPCR agonists such as the mitogens LPA and S1P as well as therapeutically relevant concentrations of cannabinoids. Moreover, this study reveals ADAM17 and HB-EGF as the main effectors of this mechanism in most of the cancer cell lines investigated. However, depending on the cellular context and GPCR agonist, various different members of the ADAM family are selectively recruited for specific ectodomain shedding of proAR and/or proHB-EGF and subsequent EGFR activation. Furthermore, biological responses induced by LPA or S1P such as migration in breast cancer and HNSCC cells, depend on ADAM17 and proHB-EGF/proAR function, respectively, suggesting that highly abundant GPCR ligands may play a role in tumour development and progression. Moreover, EGFR signal transactivation could be identified as the mechanistic link between cannabinoid receptors and the activation of mitogen activated protein kinases (MAPK) ERK1/2 as well as pro-survival Akt/PKB signalling. Depending on the cellular context, cannabinoid-induced signal cross-communication was mediated by shedding of proAmphiregulin and/or proHB-EGF by ADAM17. Most importantly, our data show that concentrations of THC comparable to those detected in the serum of patients after THC administration accelerate proliferation of cancer cells instead of apoptosis and thereby may contribute to cancer progression in patients. N2 - Im Rahmen dieser Arbeit wurde gezeigt, dass in verschiedenen etablierten Tumorzelllinien, aber auch in primären Brustepithelzellen sowohl physiologische Konzentrationen von GPCR Liganden, wie z.B. den Mitogenen LPA und S1P, als auch therapeutische Konzentrationen von Cannabinoiden zur metalloproteaseabhängigen Aktivierung des EGFRs führen. Abhängig von diesem Mechanismus konnte die Aktivierung der mitogenen Ras/MAPK-Kaskade als auch des antiapoptotischen Akt/PKB Signalweges beobachtet werden. Untersuchungen mit Hilfe der siRNA-Technik oder dominant-negativen Konstrukten identifizierten ADAM17 sowie den EGFR-Liganden HB-EGF als wichtigste Komponenten dieses Signalweges. Abhängig vom Zellsystem konnte aber auch eine Beteiligung anderer Mitglieder der ADAM Familie sowie des EGFR-Liganden Amphiregulin nachgewiesen werden. Weiterhin konnte in dieser Arbeit gezeigt werden, dass die durch LPA und S1P induzierten biologische Prozesse, wie z.B. die Migration in Brustkrebs- oder HNSCC-Zellen, vollständig von der Aktivität von ADAM17 und HB-EGF/AR abhängig waren. Außerdem konnte die ADAM17- und HB-EGF/AR-vermittelte EGFR-Transaktivierung als Bindeglied zwischen Cannabinoid-Rezeptoren und MAPK- und Akt-Aktivierung sowie erhöhter Zellproliferation identifiziert werden. Die Ergebnisse dieser Arbeit unterstreichen die Rolle der EGFR Signaltransaktivierung und dadurch induzierter biologischer Antworten wie Zellmigration oder –proliferation in Tumorzellen, und sollten darüber hinaus zu einer Neubewertung der Krebstherapie mit Cannabinoiden führen. KW - Epidermaler Wachstumsfaktor-Rezeptor KW - Krebs KW - Signaltransduktion KW - EGFR KW - GPCR KW - Transaktivierung KW - Krebs KW - Metalloprotease KW - EGFR KW - GPCR KW - transactivation KW - cancer KW - metalloprotease Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10067 ER - TY - THES A1 - Liu, Ruiqi T1 - Dynamic regulation of the melanocortin 4 receptor system in body weight homeostasis and reproductive maturation in fish T1 - Dynamische Regulation des Melanocortin-4-Rezeptor Systems bei der Körpergewichtshomöostase und der Fortpflanzungsreifung bei Fischen N2 - Puberty is an important period of life with physiological changes to enable animals to reproduce. Xiphophorus fish exhibit polymorphism in body size, puberty timing, and reproductive tactics. These phenotypical polymorphisms are controlled by the Puberty (P) locus. In X. nigrensis and X. multilineatus, the P locus encodes the melanocortin 4 receptor (Mc4r) with high genetic polymorphisms. Mc4r is a member of the melanocortin receptors, belonging to class A G-protein coupled receptors. The Mc4r signaling system consists of Mc4r, the agonist Pomc (precursor of various MSH and of ACTH), the antagonist Agrp and accessory protein Mrap2. In humans, MC4R has a role in energy homeostasis. MC4R and MRAP2 mutations are linked to human obesity but not to puberty. Mc4rs in X. nigrensis and X. multilineatus are present in three allele classes, A, B1 and B2, of which the X-linked A alleles express functional receptors and the male-specific Y-linked B alleles encode defective receptors. Male body sizes are correlated with B allele type and B allele copy numbers. Late-maturing large males carry B alleles in high copy number while early-maturing small males carry B alleles in low copy number or only A alleles. Cell culture co-expression experiments indicated that B alleles may act as dominant negative receptor mutants on A alleles. In this study, the main aim was to biochemically characterize the mechanism of puberty regulation by Mc4r in X. nigrensis and X. multilineatus, whether it is by Mc4r dimerization and/or Mrap2 interaction with Mc4r or other mechanisms. Furthermore, Mc4r in X. hellerii (another swordtail species) and medaka (a model organism phylogenetically close to Xiphophorus) were investigated to understand if the investigated mechanisms are conserved in other species. In medaka, the Mc4r signaling system genes (mc4r, mrap2, pomc, agrp1) are expressed before hatching, with agrp1 being highly upregulated during hatching and first feeding. These genes are mainly expressed in adult brain, and the transcripts of mrap2 co-localize with mc4r indicating a function in modulating Mc4r signaling. Functional comparison between wild-type and mc4r knockout medaka showed that Mc4r knockout does not affect puberty timing but significantly delays hatching due to the retarded embryonic development of knockout medaka. Hence, the Mc4r system in medaka is involved in regulation of growth rather than puberty. In Xiphophorus, expression co-localization of mc4r and mrap2 in X. nigrensis and X. hellerii fish adult brains was characterized by in situ hybridization. In both species, large males exhibit strikingly high expression of mc4r while mrap2 shows similar expression level in the large and small male and female. Differently, X. hellerii has only A-type alleles indicating that the puberty regulation mechanisms evolved independently in Xiphophorus genus. Functional analysis of Mrap2 and Mc4r A/B1/B2 alleles of X. multilineatus showed that increased Mrap2 amounts induce higher cAMP response but EC50 values do not change much upon Mrap2 co-expression with Mc4r (expressing only A allele or A and B1 alleles). A and B1 alleles were expressed higher in large male brains, while B2 alleles were only barely expressed. Mc4r A-B1 cells have lower cAMP production than Mc4r A cells. Together, this indicates a role of Mc4r alleles, but not Mrap2, in puberty onset regulation signaling. Interaction studies by FRET approach evidenced that Mc4r A and B alleles can form heterodimers and homodimers in vitro, but only for a certain fraction of the expressed receptors. Single-molecule colocalization study using super-resolution microscope dSTORM confirmed that only few Mc4r A and B1 receptors co-localized on the membrane. Altogether, the species-specific puberty onset regulation in X. nigrensis and X. multilineatus is linked to the presence of Mc4r B alleles and to some extent to its interaction with A allele gene products. This is reasoned to result in certain levels of cAMP signaling which reaches the dynamic or static threshold to permit late puberty in large males. In summary, puberty onset regulation by dominant negative effect of Mc4r mutant alleles is a special mechanism that is found so far only in X. nigrensis and X. multilineatus. Other Xiphophorus species obviously evolved the same function of the pathway by diverse mechanisms. Mc4r in other fish (medaka) has a role in regulation of growth, reminiscent of its role in energy homeostasis in humans. The results of this study will contribute to better understand the biochemical and physiological functions of the Mc4r system in vertebrates including human. N2 - Die Pubertät ist ein wichtiger Lebensabschnitt mit physiologischen Veränderungen, die die Fortpflanzung von Tieren ermöglichen. Xiphophorus Fische weisen einen Polymorphismus in Bezug auf Körpergröße, Pubertätszeit und Fortpflanzungstaktik auf. Diese phänotypischen Polymorphismen werden durch den Pubertäts (P) Locus gesteuert. In X. nigrensis und X. multilineatus kodiert der P Locus den Melanocortin-4-Rezeptor (Mc4r) mit hohen genetischen Polymorphismen. Mc4r gehört zu den Melanocortin-Rezeptoren, die zur Klasse A der G-Protein-gekoppelten Rezeptoren gehören. Das Mc4r-Signalsystem besteht aus Mc4r, dem Agonisten Pomc (Prohormon der verschiedenen MSH und des ACTH), dem Antagonisten Agrp und dem akzessorischen Protein Mrap2. Beim Menschen spielt MC4R eine Rolle bei der Energiehomöostase. MC4R und MRAP2 Mutationen stehen im Zusammenhang mit menschlicher Fettleibigkeit, jedoch nicht mit der Pubertät. Mc4rs in X. nigrensis und X. multilineatus sind in drei Allelklassen vorhanden, A, B1 und B2, von denen die X-chromosomalen A Allele funktionelle Rezeptoren exprimieren und die spezifischen männlichen Y-chromosomalen B Allele für defekte Rezeptoren kodieren. Die männliche Körpergröße korreliert mit dem B Alleltyp und der Kopienzahl des B Allels. Spätreife große Männchen tragen B Allele in hoher Kopienzahl, während frühreife kleine Männchen B Allele in niedriger Kopienzahl oder nur A Allele tragen. Koexpressions-Experimente in Zellkultur zeigten, dass B Allele als dominant negative Mutanten-Rezeptor auf A Allele wirken können. In dieser Studie war das Hauptziel die biochemische Charakterisierung des Mechanismus der Pubertätsregulation durch Mc4r in X. nigrensis und X. multilineatus. Dabei wurde untersucht, ob die Regulation durch eine Mc4r Dimerisierung und/oder Mrap2 Interaktion mit Mc4r oder durch andere Mechanismen erfolgt. Des Weiteren wurde Mc4r in X. hellerii (einer anderen Schwertträger Art) und Medaka (ein phylogenetisch naheliegender Modellorganismus von Xiphophorus) untersucht, um zu verstehen, ob die untersuchten Mechanismen in anderen Arten konserviert sind. In Medaka werden die Gene des Mc4r Signalsystems (mc4r, mrap2, pomc, agrp1) vor dem Schlüpfen exprimiert, wobei agrp1 während des Schlüpfens und der ersten Fütterung stark hochreguliert wird. Im adulten Medaka werden diese Gene hauptsächlich im Gehirn exprimiert und die Transkripte von mrap2 und mc4r kolokalisieren, was auf eine Funktion bei der Modulation der Mc4r-Signaltransduktion hinweist. Ein funktionaler Vergleich zwischen Wildtyp- und mc4r-Knockout Medaka zeigte, dass der Mc4r-Knockout das Pubertäts-Timing nicht beeinflusst, das Schlüpfen jedoch aufgrund der verzögerten embryonalen Entwicklung von Knockout-Medaka signifikant verzögert. Daher ist das Mc4r System in Medaka eher an der Regulation des Wachstums als an der Pubertät beteiligt. Bei Xiphophorus wurde die Lokalisierung von mc4r und mrap2 in erwachsenen Gehirnen von X. nigrensis und X. hellerii durch in situ Hybridisierung charakterisiert. Bei beiden Spezies zeigen große Männchen eine auffallend hohe Expression von mc4r, während mrap2 bei großen und kleinen Männchen und Weibchen ein ähnliches Expressionsniveau zeigt. Im Gegensatz dazu weist X. hellerii nur Allele vom A-Typ auf, was darauf hinweist, dass sich die Pubertätsregulationsmechanismen in dem Genus Xiphophorus unabhängig voneinander entwickelt haben. Die funktionelle Analyse der Mrap2 und Mc4r A/B1/B2 Allele von X. multilineatus zeigte, dass erhöhte Mrap2-Mengen eine höhere cAMP-Antwort induzieren, die EC50-Werte sich jedoch bei der Mrap2-Coexpression mit Mc4r nicht wesentlich ändern (nur A Allel oder A und B1 Allele). A und B1 Allele wurden in großen männlichen Gehirnen höher exprimiert, während B2 Allele kaum exprimiert wurden. Mc4r A-B1 Zellen haben eine geringere cAMP-Produktion als Mc4r A Zellen. Zusammengenommen deutet dies auf eine Rolle von Mc4r-Allelen, jedoch nicht von Mrap2, bei der Signalgebung zur Regulation des Pubertätsbeginns hin. Interaktionsstudien mit den FRET-Methoden zeigten, dass Mc4r A und B Allele in vitro Heterodimere und Homodimere bilden können, jedoch nur für einen bestimmten Anteil der exprimierten Rezeptoren. Die Einzelmolekül-co-lokalisierungsstudie unter Verwendung von der hochauflösenden Mikroskopiemethode dSTORM bestätigte, dass nur wenige Mc4r A und B1 Rezeptoren auf der Membran co-lokalisiert sind. Insgesamt ist die artspezifische Regulation des Pubertätsbeginns bei X. nigrensis und X. multilineatus auf das Vorhandensein von Mc4r B Allelen und teilweise auf deren Interaktion mit Genprodukten des A Allels zurückzuführen. Dies wird dadurch begründet, dass ein bestimmtes cAMP Niveau (statische oder dynamische Schwelle) erreicht werden muss, um die Pubertät einzuleiten. In großen Männchen wird dieses cAMP Niveau später erreicht und so die Pubertät später eingeleitet. Zusammenfassend ist die Regulation des Pubertätsbeginns durch die dominante negative Wirkung von mutierten Mc4r Allelen ein spezieller Mechanismus, der bisher nur bei X. nigrensis und X. multilineatus zu finden ist. Andere Xiphophorus Arten haben offensichtlich durch andere Mechanismen die gleiche Funktion des Signalwegs entwickelt. In anderen Fischen (Medaka) spielt Mc4r eine Rolle bei der Regulation des Wachstums und erinnert an seine Rolle bei der Energie-Homöostase beim Menschen. Die Ergebnisse dieser Studie werden dazu beitragen, die biochemischen und physiologischen Funktionen des Mc4r-Systems bei Wirbeltieren, einschließlich Menschen, besser zu verstehen. KW - Japankärpfling KW - Mc4r KW - Schwertkärpfling KW - Pubertät KW - Molekularbiologie KW - GPCR KW - Mrap2 KW - Medaka KW - Xiphophorus KW - Puberty KW - Growth Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206536 ER - TY - THES A1 - Scholz, Nicole T1 - Genetic analyses of sensory and motoneuron physiology in Drosophila melanogaster T1 - Genetische Analyse sensorischer und motoneuronaler Physiologie in Drosophila melanogaster N2 - During my PhD I studied two principal biological aspects employing Drosophila melanogaster. Therefore, this study is divided into Part I and II. Part I: Bruchpilot and Complexin interact to regulate synaptic vesicle tethering to the active zone cytomatrix At the presynaptic active zone (AZ) synaptic vesicles (SVs) are often physically linked to an electron-dense cytomatrix – a process referred to as “SV tethering”. This process serves to concentrate SVs in close proximity to their release sites before contacting the SNARE complex for subsequent fusion (Hallermann and Silver, 2013). In Drosophila, the AZ protein Bruchpilot (BRP) is part of the proteinous cytomatrix at which SVs accumulate (Kittel et al., 2006b; Wagh et al., 2006; Fouquet et al., 2009). Intriguingly, truncation of only 1% of the C-terminal region of BRP results in a severe defect in SV tethering to this AZ scaffold (hence named brpnude; Hallermann et al., 2010b). Consistent with these findings, cell-specific overexpression of a C-terminal BRP fragment, named mBRPC-tip (corresponds to 1% absent in brpnude; m = mobile) phenocopied the brpnude mutant in behavioral and functional experiments. These data indicate that mBRPC-tip suffices to saturate putative SV binding sites, which induced a functional tethering deficit at motoneuronal AZs. However, the molecular identity of the BRP complement to tether SVs to the presynaptic AZ scaffold remains unknown. Moreover, within larval motoneurons membrane-attached C-terminal portions of BRP were sufficient to tether SVs to sites outside of the AZ. Based on this finding a genetic screen was designed to identify BRP interactors in vivo. This screen identified Complexin (CPX), which is known to inhibit spontaneous SV fusion and to enhance stimulus evoked SV release (Huntwork and Littleton, 2007; Cho et al., 2010; Martin et al., 2011). However, so far CPX has not been associated with a function upstream of priming/docking and release of SVs. This work provides morphological and functional evidence, which suggests that CPX promotes recruitment of SVs to the AZ and thereby curtails synaptic short-term depression. Together, the presented findings indicate a functional interaction between BRP and CPX at Drosophila AZs. Part II: The Adhesion-GPCR Latrophilin/CIRL shapes mechanosensation The calcium independent receptor of α-latrotoxin (CIRL), also named Latrophilin, represents a prototypic Adhesion class G-protein coupled-receptor (aGPCR). Initially, Latrophilin was identified based on its capacity to bind the α-component of latrotoxin (α-LTX; Davletov et al., 1996; Krasnoperov et al., 1996), which triggers massive exocytotic activity from neurons of the peripheral nervous system (Scheer et al., 1984; Umbach et al., 1998; Orlova et al., 2000). As a result Latrophilin is considered to play a role in synaptic transmission. Later on, Latrophilins have been associated with other biological processes including tissue polarity (Langenhan et al., 2009), fertility (Prömel et al., 2012) and synaptogenesis (Silva et al., 2011). However, thus far its subcellular localization and the identity of endogenous ligands, two aspects crucial for the comprehension of Latrophilin’s in vivo function, remain enigmatic. Drosophila contains only one latrophilin homolog, named dCirl, whose function has not been investigated thus far. This study demonstrates abundant dCirl expression throughout the nervous system of Drosophila larvae. dCirlKO animals are viable and display no defects in development and neuronal differentiation. However, dCirl appears to influence the dimension of the postsynaptic sub-synaptic reticulum (SSR), which was accompanied by an increase in the postsynaptic Discs-large abundance (DLG). In contrast, morphological and functional properties of presynaptic motoneurons were not compromised by the removal of dCirl. Instead, dCirl is required for the perception of mechanical challenges (acoustic-, tactile- and proprioceptive stimuli) through specialized mechanosensory devices, chordotonal organs (Eberl, 1999). The data indicate that dCirl modulates the sensitivity of chordotonal neurons towards mechanical stimulation and thereby adjusts their input-output relation. Genetic interaction analyses suggest that adaption of the molecular mechanotransduction machinery by dCirl may underlie this process. Together, these results uncover an unexpected function of Latrophilin/dCIRL in mechanosensation and imply general modulatory roles of aGPCR in mechanoception. N2 - In dieser These wurden zwei grundlegende biologische Aspekte mittels Drosophila melanogaster untersucht, weshalb diese in zwei Teile gegliedert ist. TeiL I: Die Interaktion von Bruchpilot und Complexin vermittelt die Anbindung von synaptischen Vesikeln an die Zytomatrix der aktiven Zone Oft findet man an aktiven Zonen (AZ) von Präsynapsen elektronendichte Matrices, welche meist in physischem Kontakt mit synaptischen Vesikeln (SV) stehen. Dieser als „SV Tethering“ bezeichnete Prozess dient der Anreicherung SV in der unmittelbaren Nähe ihrer Freisetzungszonen, noch bevor diese mit dem SNARE Komplex interagieren, um mit der präsynapti-schen Plasmamembran zu fusionieren (Hallermann und Silver, 2013). In der Taufliege Drosophila melanogaster bildet das AZ Protein Bruchpilot (BRP) Protrusionen, um welche SV akkumulieren (Kittel et al., 2006b; Wagh et al., 2006; Fouquet et al., 2009). Interessan-terweise resultiert bereits eine minimale Verkürzung von BRP (1% der Gesamtlänge) am C-terminalen Ende in einem schwerwiegenden Anbindedefekt von SV, der mit einem Funkti-onsverlust dieser Synapsen einhergeht (brpnude; Hallermann et al., 2010b). Entsprechend diesem Vorbefund resultierte die gewebespezifische Überexpression eines C-terminalen BRP Fragments - mBRPC-tip (entspricht dem fehlenden Fragment der brpnude Mu-tante; m = mobil) - sowohl in Verhaltens- als auch funktionellen Analysen in einer Phänoko-pie der brpnude Mutante. Dies deutet daraufhin, dass mBRPC-tip vermeintliche vesikuläre Interaktionspartner blockiert und so die Anreicherung von SV an motoneuronalen AZ verhindert, was ähnlich wie in brpnude Mutanten zu einem funktionellen Tethering-Defekt führt. Die molekulare Identität eines BRP Partners zur Anreicherung von SV an der Zytomatrix der AZ wurde bisher nicht beschrieben. Weiterhin zeigt diese Arbeit, dass membrangebundene C-terminale BRP Anteile genügen, um SV an Positionen außerhalb von AZ zu binden. Basierend auf diesem Befund wurde ein gene-tischer in vivo Screen zur Identifikation von BRP Interaktoren entwickelt. Dieser Screen identifizierte Complexin (CPX), ein Protein, dessen hemmende beziehungsweise fördernde Wirkung auf die spontane und reizinduzierte Vesikelfusion bekannt ist (Huntwork und Littleton, 2007; Cho et al., 2010; Martin et al., 2011). CPX wurde bisher nicht mit einer Funktion ober-halb von Vesikelpriming und -fusion in Verbindung gebracht. Diese Studie dokumentiert strukturelle und funktionelle Hinweise, die darauf hindeuten, dass CPX mit BRP interagiert, um Vesikelakkumulation an AZ zu fördern und dadurch synaptischer Kurzzeit-Depression entgegen zu wirken. Teil II: Adhäsions-GPCR Latrophilin/CIRL moduliert die Wahrnehmung mechanischer Reize Der Kalzium-unabhängige Rezeptor für α-Latrotoxin (CIRL), oder Latrophilin, ist ein prototypischer Rezeptor der Adhäsions G-Protein gekoppelten Klasse (aGPCR). Identifiziert wurde Latrophilin ursprünglich aufgrund seiner Fähigkeit die α-Komponente von Latrotoxin (α-LTX) zu binden (Davletov et al., 1996; Krasnoperov et al., 1996), welches seine Wirkung am peripheren Nervensystem entfaltet und dort übermäßige Transmitterausschüttung an neuronalen Endigungen induziert (Scheer et al., 1984; Umbach et al., 1998; Orlova et al., 2000). Basierend auf diesem Effekt wurde Latrophilin eine Rolle bei der synaptischen Transmission zugesprochen. Später wurden Latrophiline mit weiteren biologischen Prozessen in Zusammenhang gebracht, darunter Gewebepolarität (Langenhan et al., 2009), Fertilität (Prömel et al., 2012) und Synaptogenese (Silva et al., 2011). Allerdings blieb sowohl die subzelluläre Lokalisation als auch die Identität endogener Liganden, zwei Schlüsselaspekte im Verständnis der in vivo Funktion von Latrophilinen bisher rätselhaft. Drosophila besitzt lediglich ein latrophilin Homolog, dCirl, dessen Funktion bisher nicht untersucht wurde. Diese Arbeit zeigt, dass dCirl in weiten Teilen des larvalen Nervensystems von Drosophila exprimiert ist. dCirl knock-out Mutanten sind lebensfähig und weisen keine Störungen in der Entwicklung und neuronalen Differenzierung auf. Allerdings schien dCirl Einfluss auf die Ausdehnung des postsynaptischen subsynaptischen Retikulums (SSR) zu nehmen, was mit einer erhöhten Menge an Discs-large (DLG) assoziiert war. Die morphologischen und funktionellen Eigenschaften präsynaptischer Motoneurone der Fliegenlarve hingegen, waren durch den Verlust von dCirl funktionell weitestgehend unbeeinträchtigt. Vielmehr ist dCirl notwendig für die Wahrnehmung mechanischer Reize (akustische-, taktile und propriozeptive) durch spezialisierte Vorrichtungen - Chordotonalorgane (Eberl, 1999). Die Befunde deuten daraufhin, dass dCirl die Sensitivität der Chordotonalneurone gegenüber mechanischen Reizen moduliert und dadurch das Input-Output Verhältnis einstellt. Adaptation der molekularen Mechanotransduktionsmaschinerie durch dCirl könnte die molekulare Grundlage für diesen Prozess darstellen, eine Hypothese die durch genetische Interaktionsanalysen gestützt wird. Schlussfolglich enthüllen die experimentellen Befunde dieser These eine unerwartete Funktion von Latrophilin/dCirl bei der Mechanoperzeption und implizieren eine generelle modula-torische Rolle für aGPCR bei der Wahrnehmung mechanischer Reize. KW - Drosophila KW - Synapse KW - GPCR KW - synaptic vesicle tethering KW - active zone KW - Complexin KW - Bruchpilot KW - Adhesion-GPCR KW - Latrophilin KW - mechanosensing Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123249 ER -