TY - JOUR A1 - Elster, Lars A1 - Platt, Christian A1 - Thomale, Ronny A1 - Hanke, Werner A1 - Hankiewicz, Ewelina M. T1 - Accessing topological superconductivity via a combined STM and renormalization group analysis JF - Nature Communications N2 - The search for topological superconductors has recently become a key issue in condensed matter physics, because of their possible relevance to provide a platform for Majorana bound states, non-Abelian statistics, and quantum computing. Here we propose a new scheme which links as directly as possible the experimental search to a material-based microscopic theory for topological superconductivity. For this, the analysis of scanning tunnelling microscopy, which typically uses a phenomenological ansatz for the superconductor gap functions, is elevated to a theory, where a multi-orbital functional renormalization group analysis allows for an unbiased microscopic determination of the material-dependent pairing potentials. The combined approach is highlighted for paradigmatic hexagonal systems, such as doped graphene and water-intercalated sodium cobaltates, where lattice symmetry and electronic correlations yield a propensity for a chiral singlet topological superconductor. We demonstrate that our microscopic material-oriented procedure is necessary to uniquely resolve a topological superconductor state. KW - tunneling spectroscopy KW - Sr\(_2\)RuO\(_4\) KW - states KW - transition KW - insulators KW - surface KW - Majorana fermions KW - unconventional superconductivity KW - wave superconductors Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148181 VL - 6 IS - 8232 ER -