TY - JOUR A1 - Waider, Jonas A1 - Popp, Sandy A1 - Mlinar, Boris A1 - Montalbano, Alberto A1 - Bonfiglio, Francesco A1 - Aboagye, Benjamin A1 - Thuy, Elisabeth A1 - Kern, Raphael A1 - Thiel, Christopher A1 - Araragi, Naozumi A1 - Svirin, Evgeniy A1 - Schmitt-Böhrer, Angelika G. A1 - Corradetti, Renato A1 - Lowry, Christopher A. A1 - Lesch, Klaus-Peter T1 - Serotonin deficiency increases context-dependent fear learning through modulation of hippocampal activity JF - Frontiers in Neuroscience N2 - Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses. KW - tryptophan hydroxylase 2 KW - knockout KW - fear learning KW - extinction KW - long-term potentiation KW - hippocampus KW - immediate-early gene KW - serotonin deficiency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196077 SN - 1662-453X VL - 13 IS - 245 ER - TY - JOUR A1 - Ferero, Andrea A1 - Rivero, Olga A1 - Wäldchen, Sina A1 - Ku, Hsing-Ping A1 - Kiser, Dominik P. A1 - Gärtner, Yvonne A1 - Pennington, Laura S. A1 - Waider, Jonas A1 - Gaspar, Patricia A1 - Jansch, Charline A1 - Edenhofer, Frank A1 - Resink, Thérèse J. A1 - Blum, Robert A1 - Sauer, Markus A1 - Lesch, Klaus-Peter T1 - Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain JF - Frontiers in Cellular Neuroscience N2 - Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders. KW - serotonin KW - cadherin-13 (CDH13) KW - T-cadherin KW - neurodevelopment KW - psychiatric disorders KW - radial glia KW - dorsal raphe KW - prefrontal cortex Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170313 VL - 11 IS - 307 ER - TY - JOUR A1 - Waider, J A1 - Popp, S A1 - Lange, MD A1 - Kern, R A1 - Kolter, JF A1 - Kobler, J A1 - Donner, NC A1 - Lowe, KR A1 - Malzbender, JH A1 - Brazell, CJ A1 - Arnold, MR A1 - Aboagye, B A1 - Schmitt-Böhrer, A A1 - Lowry, CA A1 - Pape, HC A1 - Lesch, KP T1 - Genetically driven brain serotonin deficiency facilitates panic-like escape behavior in mice JF - Translational Psychiatry N2 - Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2\(^{-/-}\)) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph\(^{+/-}\)) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala. KW - anxiety KW - stress KW - serotonin KW - genetics KW - mice Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170239 VL - 7 IS - e1246 ER - TY - JOUR A1 - Zayats, T A1 - Jacobsen, KK A1 - Kleppe, R A1 - Jacob, CP A1 - Kittel-Schneider, S A1 - Ribasés, M A1 - Ramos-Quiroga, JA A1 - Richarte, V A1 - Casas, M A1 - Mota, NR A1 - Grevet, EH A1 - Klein, M A1 - Corominas, J A1 - Bralten, J A1 - Galesloot, T A1 - Vasquez, AA A1 - Herms, S A1 - Forstner, AJ A1 - Larsson, H A1 - Breen, G A1 - Asherson, P A1 - Gross-Lesch, S A1 - Lesch, KP A1 - Cichon, S A1 - Gabrielsen, MB A1 - Holmen, OL A1 - Bau, CHD A1 - Buitelaar, J A1 - Kiemeney, L A1 - Faraone, SV A1 - Cormand, B A1 - Franke, B A1 - Reif, A A1 - Haavik, J A1 - Johansson, S T1 - Exome chip analyses in adult attention deficit hyperactivity disorder JF - Translational Psychiatry N2 - Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable childhood-onset neuropsychiatric condition, often persisting into adulthood. The genetic architecture of ADHD, particularly in adults, is largely unknown. We performed an exome-wide scan of adult ADHD using the Illumina Human Exome Bead Chip, which interrogates over 250 000 common and rare variants. Participants were recruited by the International Multicenter persistent ADHD CollaboraTion (IMpACT). Statistical analyses were divided into 3 steps: (1) gene-level analysis of rare variants (minor allele frequency (MAF)<1%); (2) single marker association tests of common variants (MAF⩾1%), with replication of the top signals; and (3) pathway analyses. In total, 9365 individuals (1846 cases and 7519 controls) were examined. Replication of the most associated common variants was attempted in 9847 individuals (2077 cases and 7770 controls) using fixed-effects inverse variance meta-analysis. With a Bonferroni-corrected significance level of 1.82E−06, our analyses of rare coding variants revealed four study-wide significant loci: 6q22.1 locus (P=4.46E−08), where NT5DC1 and COL10A1 reside; the SEC23IP locus (P=6.47E−07); the PSD locus (P=7.58E−08) and ZCCHC4 locus (P=1.79E−06). No genome-wide significant association was observed among the common variants. The strongest signal was noted at rs9325032 in PPP2R2B (odds ratio=0.81, P=1.61E−05). Taken together, our data add to the growing evidence of general signal transduction molecules (NT5DC1, PSD, SEC23IP and ZCCHC4) having an important role in the etiology of ADHD. Although the biological implications of these findings need to be further explored, they highlight the possible role of cellular communication as a potential core component in the development of both adult and childhood forms of ADHD. KW - chip analyses KW - ADHD KW - adulthood KW - Illumina Human Exome Bead Chip Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168297 VL - 6 IS - e923 ER - TY - JOUR A1 - Neufang, S. A1 - Akhrif, A. A1 - Herrmann, C.G. A1 - Drepper, C. A1 - Homola, G.A. A1 - Nowak, J. A1 - Waider, J. A1 - Schmitt, A.G. A1 - Lesch, K.-P. A1 - Romanos, M. T1 - Serotonergic modulation of 'waiting impulsivity' is mediated by the impulsivity phenotype in humans JF - Translational Psychiatry N2 - In rodents, the five-choice serial reaction time task (5-CSRTT) has been established as a reliable measure of waiting impulsivity being defined as the ability to regulate a response in anticipation of reinforcement. Key brain structures are the nucleus accumbens (NAcc) and prefrontal regions (for example, pre- and infralimbic cortex), which are, together with other transmitters, modulated by serotonin. In this functional magnetic resonance imaging study, we examined 103 healthy males while performing the 5-CSRTT measuring brain activation in humans by means of a paradigm that has been widely applied in rodents. Subjects were genotyped for the tryptophan hydroxylase-2 (TPH2; G-703T; rs4570625) variant, an enzyme specific for brain serotonin synthesis. We addressed neural activation patterns of waiting impulsivity and the interaction between the NAcc and the ventromedial prefrontal cortex (vmPFC) using dynamic causal modeling. Genetic influence was examined via interaction analyses between the TPH2 genotype (GG homozygotes vs T allele carriers) and the degree of impulsivity as measured by the 5-CSRTT. We found that the driving input of the vmPFC was reduced in highly impulsive T allele carriers (reflecting a reduced top-down control) in combination with an enhanced response in the NAcc after correct target processing (reflecting an augmented response to monetary reward). Taken together, we found a high overlap of our findings with reports from animal studies in regard to the underlying cognitive processes, the brain regions associated with waiting impulsivity and the neural interplay between the NAcc and vmPFC. Therefore, we conclude that the 5-CSRTT is a promising tool for translational studies. KW - Clinical Genetics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164418 IS - 6 ER - TY - JOUR A1 - Jansch, Charline A1 - Günther, Katharina A1 - Waider, Jonas A1 - Ziegler, Georg C. A1 - Forero, Andrea A1 - Kollert, Sina A1 - Svirin, Evgeniy A1 - Pühringer, Dirk A1 - Kwok, Chee Keong A1 - Ullmann, Reinhard A1 - Maierhofer, Anna A1 - Flunkert, Julia A1 - Haaf, Thomas A1 - Edenhofer, Frank A1 - Lesch, Klaus-Peter T1 - Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3 JF - Stem Cell Research N2 - Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner. KW - ADHD KW - SLC2A3 KW - induced pluripotent stem cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176654 VL - 28 ER - TY - JOUR A1 - Schäfer, Nadine A1 - Friedrich, Maximilian A1 - Jørgensen, Morten Egevang A1 - Kollert, Sina A1 - Koepsell, Hermann A1 - Wischmeyer, Erhard A1 - Lesch, Klaus-Peter A1 - Geiger, Dietmar A1 - Döring, Frank T1 - Functional analysis of a triplet deletion in the gene encoding the sodium glucose transporter 3, a potential risk factor for ADHD JF - PLoS ONE N2 - Sodium-glucose transporters (SGLT) belong to the solute carrier 5 family, which is characterized by sodium dependent transport of sugars and other solutes. In contrast, the human SGLT3 (hSGLT3) isoform, encoded by SLC5A4, acts as a glucose sensor that does not transport sugar but induces membrane depolarization by Na\(^{+}\) currents upon ligand binding. Whole-exome sequencing (WES) of several extended pedigrees with high density of attention-deficit/hyperactivity disorder (ADHD) identified a triplet ATG deletion in SLC5A4 leading to a single amino acid loss (ΔM500) in the hSGLT3 protein imperfectly co-segregating with the clinical phenotype of ADHD. Since mutations in homologous domains of hSGLT1 and hSGLT2 were found to affect intestinal and renal function, respectively, we analyzed the functional properties of hSGLT3[wt] and [ΔM500] by voltage clamp and current clamp recordings from cRNA-injected Xenopus laevis oocytes. The cation conductance of hSGLT3[wt] was activated by application of glucose or the specific agonist 1-desoxynojirimycin (DNJ) as revealed by inward currents in the voltage clamp configuration and cell depolarization in the current clamp mode. Almost no currents and changes in membrane potential were observed when glucose or DNJ were applied to hSGLT3[ΔM500]-injected oocytes, demonstrating a loss of function by this amino acid deletion in hSGLT3. To monitor membrane targeting of wt and mutant hSGLT3, fusion constructs with YFP were generated, heterologously expressed in Xenopus laevis oocytes and analyzed for membrane fluorescence by confocal microscopy. In comparison to hSGLT3[wt] the fluorescent signal of mutant [ΔM500] was reduced by 43% indicating that the mutant phenotype might mainly result from inaccurate membrane targeting. As revealed by homology modeling, residue M500 is located in TM11 suggesting that in addition to the core structure (TM1-TM10) of the transporter, the surrounding TMs are equally crucial for transport/sensor function. In conclusion, our findings indicate that the deletion [ΔM500] in hSGLT3 inhibits membrane targeting and thus largely disrupts glucose-induced sodium conductance, which may, in interaction with other ADHD risk-related gene variants, influence the risk for ADHD in deletion carriers. KW - Xenopus laevis oocytes KW - ADHD KW - glucose KW - cell membranes KW - membrane proteins KW - membrane potential KW - crystal structure KW - amino acid analysis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176495 VL - 13 IS - 10 ER - TY - JOUR A1 - Rivero, O A1 - Selten, MM A1 - Sich, S A1 - Popp, S A1 - Bacmeister, L A1 - Amendola, E A1 - Negwer, M A1 - Schubert, D A1 - Proft, F A1 - Kiser, D A1 - Schmitt, AG A1 - Gross, C A1 - Kolk, SM A1 - Strekalova, T A1 - van den Hove, D A1 - Resink, TJ A1 - Kasir, N Nadif A1 - Lesch, KP T1 - Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition JF - Translational Psychiatry N2 - Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo) phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13\(^{-/-}\) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13\(^{-/-}\) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism. KW - genome-wide association KW - deficit hyperactivity disorder KW - psychiatric disorders KW - neurodevelopmental disorders KW - synaptic plasticity KW - response inhibition KW - positive interneurons KW - T-cadherin KW - long-term potentiation KW - attention deficit/hyperactivity disorder Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145218 VL - 5 IS - e655 ER - TY - JOUR A1 - Cline, Brandon H. A1 - Costa-Nunes, Joao P. A1 - Cespuglio, Raymond A1 - Markova, Natalyia A1 - Santos, Ana I. A1 - Bukhman, Yury V. A1 - Kubatiev, Aslan A1 - Steinbusch, Harry W. M. A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression JF - Frontiers in Behavioral Neuroscience N2 - Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naive DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naive animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. KW - phosphorylated glycogen synthase kinase-3beta (pGSK-3beta) KW - hippocampal plasticity KW - sleep EEG KW - aging KW - NMDA receptor subunits NR2A and NR2B KW - dicholine succinate KW - insulin receptor KW - chronic stress Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143992 VL - 9 IS - 37 ER - TY - JOUR A1 - Bodden, Carina A1 - Richter, S. Helene A1 - Schreiber, Rebecca S. A1 - Kloke, Vanessa A1 - Gerß, Joachim A1 - Palme, Rupert A1 - Lesch, Klaus-Peter A1 - Lewejohann, Lars A1 - Kaiser, Sylvia A1 - Sachser, Norbert T1 - Benefits of adversity?! How life history affects the behavioral profile of mice varying in serotonin transporter genotype JF - Frontiers in Behavioral Neuroscience N2 - Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety like behavior ("allostatic load"). The alternative "mismatch hypothesis" suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HIT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered. KW - anxiety-like behavior KW - maternal care KW - dangerous world KW - animal behavior KW - match-mismatch KW - chronic social stress KW - elevated plus-maze KW - 5-HTT KW - life history KW - predictive adaptive response hypothesis KW - developmental plasticity KW - knockout mice KW - environmental enrichment KW - allostatic load Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143723 VL - 9 IS - 47 ER -