TY - JOUR A1 - Maihoff, Fabienne A1 - Sahler, Simone A1 - Schoger, Simon A1 - Brenzinger, Kristof A1 - Kallnik, Katharina A1 - Sauer, Nikki A1 - Bofinger, Lukas A1 - Schmitt, Thomas A1 - Nooten, Sabine S. A1 - Classen, Alice T1 - Cuticular hydrocarbons of alpine bumble bees (Hymenoptera: Bombus) are species-specific, but show little evidence of elevation-related climate adaptation JF - Frontiers in Ecology and Evolution N2 - Alpine bumble bees are the most important pollinators in temperate mountain ecosystems. Although they are used to encounter small-scale successions of very different climates in the mountains, many species respond sensitively to climatic changes, reflected in spatial range shifts and declining populations worldwide. Cuticular hydrocarbons (CHCs) mediate climate adaptation in some insects. However, whether they predict the elevational niche of bumble bees or their responses to climatic changes remains poorly understood. Here, we used three different approaches to study the role of bumble bees’ CHCs in the context of climate adaptation: using a 1,300 m elevational gradient, we first investigated whether the overall composition of CHCs, and two potentially climate-associated chemical traits (proportion of saturated components, mean chain length) on the cuticle of six bumble bee species were linked to the species’ elevational niches. We then analyzed intraspecific variation in CHCs of Bombus pascuorum along the elevational gradient and tested whether these traits respond to temperature. Finally, we used a field translocation experiment to test whether CHCs of Bombus lucorum workers change, when translocated from the foothill of a cool and wet mountain region to (a) higher elevations, and (b) a warm and dry region. Overall, the six species showed distinctive, species-specific CHC profiles. We found inter- and intraspecific variation in the composition of CHCs and in chemical traits along the elevational gradient, but no link to the elevational distribution of species and individuals. According to our expectations, bumble bees translocated to a warm and dry region tended to express longer CHC chains than bumble bees translocated to cool and wet foothills, which could reflect an acclimatization to regional climate. However, chain lengths did not further decrease systematically along the elevational gradient, suggesting that other factors than temperature also shape chain lengths in CHC profiles. We conclude that in alpine bumble bees, CHC profiles and traits respond at best secondarily to the climate conditions tested in this study. While the functional role of species-specific CHC profiles in bumble bees remains elusive, limited plasticity in this trait could restrict species’ ability to adapt to climatic changes. KW - pollinators KW - altitudinal gradient KW - cuticular hydrocarbon KW - desiccation KW - mountain KW - global change KW - translocation experiment KW - drought stress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304420 SN - 2296-701X VL - 11 ER - TY - JOUR A1 - Kárpáti, Zsolt A1 - Deutsch, Ferenc A1 - Kiss, Balázs A1 - Schmitt, Thomas T1 - Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii JF - Scientific Reports N2 - Seasonal plasticity in insects is often triggered by temperature and photoperiod changes. When climatic conditions become sub-optimal, insects might undergo reproductive diapause, a form of seasonal plasticity delaying the development of reproductive organs and activities. During the reproductive diapause, the cuticular hydrocarbon (CHC) profile, which covers the insect body surface, might also change to protect insects from desiccation and cold temperature. However, CHCs are often important cues and signals for mate recognition and changes in CHC composition might affect mate recognition. In the present study, we investigated the CHC profile composition and the mating success of Drosophila suzukii in 1- and 5-day-old males and females of summer and winter morphs. CHC compositions differed with age and morphs. However, no significant differences were found between the sexes of the same age and morph. The results of the behavioral assays show that summer morph pairs start to mate earlier in their life, have a shorter mating duration, and have more offspring compared to winter morph pairs. We hypothesize that CHC profiles of winter morphs are adapted to survive winter conditions, potentially at the cost of reduced mate recognition cues. KW - ecology KW - zoology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358095 VL - 13 ER - TY - JOUR A1 - Frank, Erik T. A1 - Kesner, Lucie A1 - Liberti, Joanito A1 - Helleu, Quentin A1 - LeBoeuf, Adria C. A1 - Dascalu, Andrei A1 - Sponsler, Douglas B. A1 - Azuma, Fumika A1 - Economo, Evan P. A1 - Waridel, Patrice A1 - Engel, Philipp A1 - Schmitt, Thomas A1 - Keller, Laurent T1 - Targeted treatment of injured nestmates with antimicrobial compounds in an ant society JF - Nature Communications N2 - Infected wounds pose a major mortality risk in animals. Injuries are common in the ant Megaponera analis, which raids pugnacious prey. Here we show that M. analis can determine when wounds are infected and treat them accordingly. By applying a variety of antimicrobial compounds and proteins secreted from the metapleural gland to infected wounds, workers reduce the mortality of infected individuals by 90%. Chemical analyses showed that wound infection is associated with specific changes in the cuticular hydrocarbon profile, thereby likely allowing nestmates to diagnose the infection state of injured individuals and apply the appropriate antimicrobial treatment. This study demonstrates that M. analis ant societies use antimicrobial compounds produced in the metapleural glands to treat infected wounds and reduce nestmate mortality. KW - animal behaviour KW - chemical ecology KW - entomology KW - microbial ecology KW - proteomics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358081 VL - 14 ER - TY - JOUR A1 - Otieno, Mark A1 - Karpati, Zsolt A1 - Peters, Marcell K. A1 - Duque, Laura A1 - Schmitt, Thomas A1 - Steffan-Dewenter, Ingolf T1 - Elevated ozone and carbon dioxide affects the composition of volatile organic compounds emitted by Vicia faba (L.) and visitation by European orchard bee (Osmia cornuta) JF - PLoS One N2 - Recent studies link increased ozone (O\(_3\)) and carbon dioxide (CO\(_2\)) levels to alteration of plant performance and plant-herbivore interactions, but their interactive effects on plant-pollinator interactions are little understood. Extra floral nectaries (EFNs) are essential organs used by some plants for stimulating defense against herbivory and for the attraction of insect pollinators, e.g., bees. The factors driving the interactions between bees and plants regarding the visitation of bees to EFNs are poorly understood, especially in the face of global change driven by greenhouse gases. Here, we experimentally tested whether elevated levels of O\(_3\) and CO\(_2\) individually and interactively alter the emission of Volatile Organic Compound (VOC) profiles in the field bean plant (Vicia faba, L., Fabaceae), EFN nectar production and EFN visitation by the European orchard bee (Osmia cornuta, Latreille, Megachilidae). Our results showed that O\(_3\) alone had significant negative effects on the blends of VOCs emitted while the treatment with elevated CO\(_2\) alone did not differ from the control. Furthermore, as with O\(_3\) alone, the mixture of O\(_3\) and CO\(_2\) also had a significant difference in the VOCs’ profile. O\(_3\) exposure was also linked to reduced nectar volume and had a negative impact on EFN visitation by bees. Increased CO\(_2\) level, on the other hand, had a positive impact on bee visits. Our results add to the knowledge of the interactive effects of O\(_3\) and CO\(_2\) on plant volatiles emitted by Vicia faba and bee responses. As greenhouse gas levels continue to rise globally, it is important to take these findings into consideration to better prepare for changes in plant-insect interactions. KW - Volatile Organic Compound (VOC) KW - Vicia faba (L.) KW - European orchard bee (Osmia cornuta) KW - carbon dioxide (CO2) KW - ozone (O3) KW - bees KW - flowering plants KW - plant-insect interactions KW - flowers KW - plant physiology KW - plant-herbivore interactions Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350020 VL - 18 IS - 4 ER - TY - JOUR A1 - Moris, Victoria C. A1 - Christmann, Katharina A1 - Wirtgen, Aline A1 - Belokobylskij, Sergey A. A1 - Berg, Alexander A1 - Liebig, Wolf-Harald A1 - Soon, Villu A1 - Baur, Hannes A1 - Schmitt, Thomas A1 - Niehuis, Oliver T1 - Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes JF - Chemoecology N2 - The mason wasp Odynerus spinipes shows an exceptional case of intrasexual cuticular hydrocarbon (CHC) profile dimorphism. Females of this species display one of two CHC profiles (chemotypes) that differ qualitatively and quantitatively from each other. The ratio of the two chemotypes was previously shown to be close to 1:1 at three sites in Southern Germany, which might not be representative given the Palearctic distribution of the species. To infer the frequency of the two chemotypes across the entire distributional range of the species, we analyzed with GC–MS the CHC profile of 1042 dry-mounted specimens stored in private and museum collections. We complemented our sampling by including 324 samples collected and preserved specifically for studying their CHCs. We were capable of reliably identifying the chemotypes in 91% of dry-mounted samples, some of which collected almost 200 years ago. We found both chemotypes to occur in the Far East, the presumed glacial refuge of the species, and their frequency to differ considerably between sites and geographic regions. The geographic structure in the chemotype frequencies could be the result of differential selection regimes and/or different dispersal routes during the colonization of the Western Palearctic. The presented data pave the route for disentangling these factors by providing information where to geographically sample O. spinipes for population genetic analyses. They also form the much-needed basis for future studies aiming to understand the evolutionary and geographic origin as well as the genetics of the astounding CHC profile dimorphism that O. spinipes females exhibit. KW - cuticular hydrocarbons KW - chemotypes KW - dry-mounted samples KW - collections KW - distribution Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-306999 SN - 0937-7409 SN - 1423-0445 VL - 31 IS - 5 ER - TY - JOUR A1 - Maihoff, Fabienne A1 - Bohlke, Kyte A1 - Brockmann, Axel A1 - Schmitt, Thomas T1 - Increased complexity of worker CHC profiles in Apis dorsata correlates with nesting ecology JF - PLoS ONE N2 - Cuticular hydrocarbons (CHC) are known to serve as discrimination cues and will trigger defence behaviour in a plethora of eusocial insects. However, little is known how about nestmate recognition ability selects for CHC diversification. In this study we investigate differences in CHC composition of four major honey bee species with respect to the differences in their nesting behavior. In contrast to A. mellifera, A. cerana and A. florea, the giant honey bee A. dorsata prefers to build their nests in aggregations with very small spatial distances between nests, which increases the probability of intrusions. Thus, A. dorsata exhibits a particularly challenging nesting behavior which we hypothesize should be accompanied with an improved nestmate recognition system. Comparative analyses of the worker CHC profiles indicate that A. dorsata workers exhibit a unique and more complex CHC profile than the other three honey bee species. This increased complexity is likely based on a developmental process that retains the capability to synthesize methyl-branched hydrocarbons as adults. Furthermore, two sets of behavioral experiments provide evidence that A. dorsata shows an improved nestmate discrimination ability compared to the phylogenetically ancestral A. florea, which is also open-nesting but does not form nest aggregations. The results of our study suggest that ecological traits like nesting in aggregation might be able to drive CHC profile diversification even in closely related insect species. KW - Apis dorsata KW - cuticular hydrocarbons KW - nesting Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301353 VL - 17 IS - 7 ER - TY - JOUR A1 - Buellesbach, Jan A1 - Vetter, Sebastian G. A1 - Schmitt, Thomas T1 - Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps JF - Frontiers in Zoology N2 - Background Cuticular hydrocarbons (CHC) have been documented to play crucial roles as species- and sex-specific cues in the chemical communication systems of a wide variety of insects. However, whether they are sufficient by themselves as the sole cue triggering sexual behavior as well as preference of con- over heterospecific mating partners is rarely assessed. We conducted behavioral assays in three representative species of parasitoid wasps (Hymenoptera: Pteromalidae) to determine their reliance on CHC as species-specific sexual signaling cues. Results We found a surprising degree of either unspecific or insufficient sexual signaling when CHC are singled out as recognition cues. Most strikingly, the cosmopolitan species Nasonia vitripennis, expected to experience enhanced selection pressure to discriminate against other co-occurring parasitoids, did not discriminate against CHC of a partially sympatric species from another genus, Trichomalopsis sarcophagae. Focusing on the latter species, in turn, it became apparent that CHC are even insufficient as the sole cue triggering conspecific sexual behavior, hinting at the requirement of additional, synergistic sexual cues particularly important in this species. Finally, in the phylogenetically and chemically most divergent species Muscidifurax uniraptor, we intriguingly found both CHC-based sexual signaling as well as species discrimination behavior intact although this species is naturally parthenogenetic with sexual reproduction only occurring under laboratory conditions. Conclusions Our findings implicate a discrepancy in the reliance on and specificity of CHC as sexual cues in our tested parasitioid wasps. CHC profiles were not sufficient for unambiguous discrimination and preference behavior, as demonstrated by clear cross-attraction between some of our tested wasp genera. Moreover, we could show that only in T. sarcophagae, additional behavioral cues need to be present for triggering natural mating behavior, hinting at an interesting shift in signaling hierarchy in this particular species. This demonstrates the importance of integrating multiple, potentially complementary signaling modalities in future studies for a better understanding of their individual contributions to natural sexual communication behavior. KW - chemical communication KW - assortative mating KW - mate recognition KW - prezygotic reproductive isolation KW - speciation KW - Nasonia KW - Trichomalopsis KW - Muscidifurax KW - Pteromalidae KW - Hymenoptera Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221702 VL - 15 ER - TY - JOUR A1 - Castillo, Ruth A1 - Wurdack, Mareike A1 - Pauli, Thomas A1 - Keller, Alexander A1 - Feldhaar, Heike A1 - Polidori, Carlo A1 - Niehuis, Oliver A1 - Schmitt, Thomas T1 - Evidence for a chemical arms race between cuckoo wasps of the genus Hedychrum and their distantly related host apoid wasps JF - BMC Ecology and Evolution N2 - Background Brood parasites can exert strong selection pressure on their hosts. Many brood parasites escape their detection by mimicking sensory cues of their hosts. However, there is little evidence whether or not the hosts are able to escape the parasites’ mimicry by changing these cues. We addressed this question by analyzing cuticular hydrocarbon (CHC) profiles of Cerceris and Philanthus wasps and their brood parasites, cuckoo wasps mimicking the CHC profiles of their hosts. Some of these hosts use hydrocarbons to preserve their prey against fungal infestation and thus, they cannot significantly change their CHC composition in response to chemical mimicry by Hedychrum brood parasites. Results We found that the CHC overlap between brood parasites and their hosts was lower in case of host wasps not preserving their prey than in case of prey-preserving host wasps, whose CHC evolution is constrained. Furthermore, the CHC profiles in non-preserving host wasps is more strongly diversified in females than in males, thus in the sex that is chemically mimicked by brood parasites. Conclusion Our results provide evidence for a chemical arms race between those hosts that are liberated from stabilizing selection on their chemical template and their parasites. KW - chemical mimicry KW - philanthidae KW - hymenoptera KW - evolutionary arms race KW - cuticular hydrocarbons KW - chrysididae Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301289 VL - 22 IS - 1 ER - TY - JOUR A1 - Buellesbach, Jan A1 - Diao, Wenwen A1 - Schmitt, Thomas A1 - Beukeboom, Leo W. T1 - Micro‐climate correlations and conserved sexual dimorphism of cuticular hydrocarbons in European populations of the jewel wasp Nasonia vitripennis JF - Ecological Entomology N2 - 1. Protection against desiccation and chemical communication are two fundamental functions of cuticular hydrocarbons (CHCs) in insects. In the parasitoid jewel wasp Nasonia vitripennis (Walker), characterised by a cosmopolitan distribution through largely different environments, CHCs function as universally recognised female sex pheromones. However, CHC uniformity as basis for sexual recognition may conflict with the desiccation protection function, expected to display considerable flexibility through adaptation to different environmental conditions. 2. We compared male and female CHC profiles of N. vitripennis across a wide latitudinal gradient in Europe and correlated their CHC variation with climatic factors associated with desiccation. Additionally, we tested male mate discrimination behaviour between populations to detect potential variations in female sexual attractiveness. 3. Results did not conform to the general expectation that longer, straight‐chain CHCs occur in higher proportions in warmer and drier climates. Instead, unexpected environmental correlations of intermediate chain‐length CHCs (C31) were found exclusively in females, potentially reflecting the different life histories of the sexes in N. vitripennis. 4. Furthermore, we found no indication of population‐specific male mate preference, confirming the stability of female sexual attractiveness, likely conveyed through their CHC profiles. C31 mono‐ and C33 di‐methyl‐branched alkanes were consistently and most strongly associated with sexual dimorphism, suggesting their potential role in encoding the female‐specific sexual signalling function. 5. Our study sheds light on how both adaptive flexibility and conserved sexual attractiveness can potentially be integrated and encoded in CHC profiles of N. vitripennis females across a wide distribution range in Europe. KW - chemical communication KW - climatic factors KW - desiccation resistance KW - sex pheromones KW - sexual dimorphism Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262770 VL - 47 IS - 1 SP - 38 EP - 51 ER - TY - RPRT A1 - Müller, Jörg A1 - Scherer-Lorenzen, Michael A1 - Ammer, Christian A1 - Eisenhauer, Nico A1 - Seidel, Dominik A1 - Schuldt, Bernhard A1 - Biedermann, Peter A1 - Schmitt, Thomas A1 - Künzer, Claudia A1 - Wegmann, Martin A1 - Cesarz, Simone A1 - Peters, Marcell A1 - Feldhaar, Heike A1 - Steffan-Dewenter, Ingolf A1 - Claßen, Alice A1 - Bässler, Claus A1 - von Oheimb, Goddert A1 - Fichtner, Andreas A1 - Thorn, Simon A1 - Weisser, Wolfgang T1 - BETA-FOR: Erhöhung der strukturellen Diversität zwischen Waldbeständen zur Erhöhung der Multidiversität und Multifunktionalität in Produktionswäldern. Antragstext für die DFG Forschungsgruppe FOR 5375 T1 - BETA-FOR: Enhancing the structural diversity between patches for improving multidiversity and multifunctionality in production forests. Proposal for DFG Research Unit FOR 5375 BT - β\(_4\) : Proposal for the 1st phase (2022-2026) of the DFG Research Unit FOR 5375/1 (DFG Forschergruppe FOR 5375/1 – BETA-FOR), Fabrikschleichach, October 2021 N2 - Der in jüngster Zeit beobachtete kontinuierliche Verlust der β-Diversität in Ökosystemen deutet auf homogene Gemeinschaften auf Landschaftsebene hin, was hauptsächlich auf die steigende Landnutzungsintensität zurückgeführt wird. Biologische Vielfalt ist mit zahlreichen Funktionen und der Stabilität von Ökosystemen verknüpft. Es ist daher zu erwarten, dass eine abnehmende β-Diversität auch die Multifunktionalität verringert. Wir kombinieren hier Fachwissen aus der Forstwissenschaft, der Ökologie, der Fernerkundung, der chemischen Ökologie und der Statistik in einem gemeinschaftlichen und experimentellen β-Diversitätsdesign, um einerseits die Auswirkungen der Homogenisierung zu bewerten und andererseits Konzepte zu entwickeln, um negative Auswirkungen durch Homogenisierung in Wäldern rückgängig zu machen. Konkret werden wir uns mit der Frage beschäftigen, ob die Verbesserung der strukturellen β-Komplexität (ESBC) in Wäldern durch Waldbau oder natürliche Störungen die Biodiversität und Multifunktionalität in ehemals homogenen Produktionswäldern erhöhen kann. Unser Ansatz wird mögliche Mechanismen hinter den beobachteten Homogenisierungs-Diversitäts-Beziehungen identifizieren und zeigen, wie sich diese auf die Multifunktionalität auswirken. An elf Standorten in ganz Deutschland haben wir dazu zwei Waldbestände als zwei kleine "Waldlandschaften" ausgewählt. In einem dieser beiden Bestände haben wir ESBC (Enhancement of Structural Beta Complexity)-Behandlungen durchgeführt. Im zweiten, dem Kontrollbestand, werden wir die gleich Anzahl 50x50m Parzellen ohne ESBC einrichten. Auf allen Parzellen werden wir 18 taxonomische Artengruppen aller trophischer Ebenen und 21 Ökosystemfunktionen, einschließlich der wichtigsten Funktionen in Wäldern der gemäßigten Zonen, messen. Der statistische Rahmen wird eine umfassende Analyse der Biodiversität ermöglichen, indem verschiedenen Aspekte (taxonomische, funktionelle und phylogenetische Vielfalt) auf verschiedenen Skalenebenen (α-, β-, γ-Diversität) quantifiziert werden. Um die Gesamtdiversität zu kombinieren, werden wir das Konzept der Multidiversität auf die 18 Taxa anwenden. Wir werden neue Ansätze zur Quantifizierung und Aufteilung der Multifunktionalität auf α- und β-Skalen verwenden und entwickeln. Durch die experimentelle Beschreibung des Zusammenhangs zwischen β-Diversität und Multifunktionalität in einer Reallandschaft wird unsere Forschung einen neuen Weg einschlagen. Darüber hinaus werden wir dazu beitragen, verbesserte Leitlinien für waldbauliche Konzepte und für das Management natürlicher Störungen zu entwickeln, um Homogenisierungseffekte der Vergangenheit umzukehren. N2 - The recently observed consistent loss of β-diversity across ecosystems indicates increasingly homogeneous communities in patches of landscapes, mainly caused by increasing land-use intensity. Biodiversity is related to numerous ecosystem functions and stability. Therefore, decreasing β-diversity is also expected to reduce multifunctionality. To assess the impact of homogenization and to develop guidelines to reverse its potentially negative effects, we combine expertise from forest science, ecology, remote sensing, chemical ecology and statistics in a collaborative and experimental β-diversity approach. Specifically, we will address the question whether the Enhancement of Structural Beta Complexity (ESBC) in forests by silviculture or natural disturbances will increase biodiversity and multifunctionality in formerly homogeneously structured production forests. Our approach will identify potential mechanisms behind observed homogenization-diversity-relationships and show how these translate into effects on multifunctionality. At eleven forest sites throughout Germany, we selected two districts as two types of small ‘forest landscapes’. In one of these two districts, we established ESBC treatments (nine differently treated 50x50 m patches with a focus on canopy cover and deadwood features). In the second, the control district, we will establish nine patches without ESBC. By a comprehensive sampling, we will monitor 18 taxonomic groups and measure 21 ecosystem functions, including key functions in temperate forests, on all patches. The statistical framework will allow a comprehensive biodiversity assessment by quantifying the different aspects of multitrophic biodiversity (taxonomical, functional and phylogenetic diversity) on different levels of biodiversity (α-, β-, γ-diversity). To combine overall diversity, we will apply the concept of multidiversity across the 18 taxa. We will use and develop new approaches for quantification and partitioning of multifunctionality at α- and β- scales. Overall, our study will herald a new research avenue, namely by experimentally describing the link between β-diversity and multifunctionality. Furthermore, we will help to develop guidelines for improved silvicultural concepts and concepts for management of natural disturbances in temperate forests reversing past homogenization effects. KW - Waldökosystem KW - Biodiversität KW - BETA-Multifunktionalität KW - beta-multifunctionality KW - BETA-Diversität KW - beta diversity KW - Forschungsstation Fabrikschleichach Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290849 ER -