TY - THES A1 - Letschert, Sebastian T1 - Quantitative Analysis of Membrane Components using Super-Resolution Microscopy T1 - Quantitative Analyse von Membrankomponenten mittels hochauflösender Fluoreszenzmikroskopie N2 - The plasma membrane is one of the most thoroughly studied and at the same time most complex, diverse, and least understood cellular structures. Its function is determined by the molecular composition as well as the spatial arrangement of its components. Even after decades of extensive membrane research and the proposal of dozens of models and theories, the structural organization of plasma membranes remains largely unknown. Modern imaging tools such as super-resolution fluorescence microscopy are one of the most efficient techniques in life sciences and are widely used to study the spatial arrangement and quantitative behavior of biomolecules in fixed and living cells. In this work, direct stochastic optical reconstruction microscopy (dSTORM) was used to investigate the structural distribution of mem-brane components with virtually molecular resolution. Key issues are different preparation and staining strategies for membrane imaging as well as localization-based quantitative analyses of membrane molecules. An essential precondition for the spatial and quantitative analysis of membrane components is the prevention of photoswitching artifacts in reconstructed localization microscopy images. Therefore, the impact of irradiation intensity, label density and photoswitching behavior on the distribution of plasma membrane and mitochondrial membrane proteins in dSTORM images was investigated. It is demonstrated that the combination of densely labeled plasma membranes and inappropriate photoswitching rates induces artificial membrane clusters. Moreover, inhomogeneous localization distributions induced by projections of three-dimensional membrane structures such as microvilli and vesicles are prone to generate artifacts in images of biological membranes. Alternative imaging techniques and ways to prevent artifacts in single-molecule localization microscopy are presented and extensively discussed. Another central topic addresses the spatial organization of glycosylated components covering the cell membrane. It is shown that a bioorthogonal chemical reporter system consisting of modified monosaccharide precursors and organic fluorophores can be used for specific labeling of membrane-associated glycoproteins and –lipids. The distribution of glycans was visualized by dSTORM showing a homogeneous molecule distribution on different mammalian cell lines without the presence of clusters. An absolute number of around five million glycans per cell was estimated and the results show that the combination of metabolic labeling, click chemistry, and single-molecule localization microscopy can be efficiently used to study cell surface glycoconjugates. In a third project, dSTORM was performed to investigate low-expressing receptors on cancer cells which can act as targets in personalized immunotherapy. Primary multiple myeloma cells derived from the bone marrow of several patients were analyzed for CD19 expression as potential target for chimeric antigen receptor (CAR)-modified T cells. Depending on the patient, 60–1,600 CD19 molecules per cell were quantified and functional in vitro tests demonstrate that the threshold for CD19 CAR T recognition is below 100 CD19 molecules per target cell. Results are compared with flow cytometry data, and the important roles of efficient labeling and appropriate control experiments are discussed. N2 - Die Plasmamembran gehört zu den am meisten untersuchten, gleichzeitig aber auch zu den komplexesten, vielfältigsten und am wenigsten verstandenen biologischen Strukturen. Ihre Funktion wird nicht nur durch die molekulare Zusammensetzung bestimmt, sondern auch durch die räumliche Anordnung ihrer Bestandteile. Selbst nach Jahrzehnten intensiver Forschung und der Veröffentlichung dutzender Membranmodelle und Theorien bleibt die genaue strukturelle Organisation der Plasmamembran ein Rätsel. Moderne Bildgebungsverfahren wie etwa die hochauflösende Fluoreszenzmikroskopie gehören mittlerweile zu den effizientesten Techniken der Lebenswissenschaften und werden immer öfter verwendet, um die räumliche Anordnung als auch die Anzahl von Biomolekülen in fixierten und lebenden Zellen zu studieren. Im Rahmen dieser Arbeit wurde die hochauflösende Mikroskopie-Methode dSTORM (direct stochastic optical reconstruction microscopy) angewendet, um die räumliche Verteilung von Membranmolekülen mit annähernd molekularer Auflösung zu untersuchen. Schwerpunkte dieser Arbeit sind dabei verschiedene Präparations- und Färbemethoden für die mikroskopische Untersuchung von Zellmembranen sowie lokalisationsbasierte quantitative Analysemethoden von Membranmolekülen. Eine Voraussetzung für die räumliche als auch quantitative Analyse von Membranmolekülen ist die Vermeidung von Photoschalt-Artefakten in rekonstruierten Lokalisationsmikroskopie-Bildern. Um dies genauer zu demonstrieren, wurden die Auswirkungen von Anregungsintensität, Markierungsdichte und verändertem Photoschalten auf die räumliche Verteilung von Proteinen der Plasma- und Mitochondrienmembran in dSTORM-Bildern analysiert. Es wird gezeigt, dass eine dicht markierte Plasmamembran in Kombination mit ungeeigneten Photoschaltraten zu artifiziellen Clustern in der Membran führt. Es sind vor Allem oft die Projektionen dreidimensionaler Membranstrukturen wie etwa Mikrovilli und Vesikel dafür verantwortlich, dass lokale Unterschiede in der Lokalisationsdichte entstehen, wodurch unter Umständen Bildartefakte generiert werden können. Darüber hinaus werden alternative Mikroskopie-Methoden und Möglichkeiten, Artefakte in Einzelmolekül-Lokalisationsmikroskopie-Bildern zu verhindern, präsentiert und ausführlich diskutiert. Ein weiteres zentrales Thema dieser Arbeit ist die räumliche Anordnung von glykosylierten Membranmolekülen. Es wird demonstriert, wie ein bioorthogonales chemisches Reportersystem bestehend aus modifizierten Monosacchariden und organischen Fluorophoren für die spezifische Markierung von Membran-assoziierten Glykoproteinen und –lipiden eingesetzt werden kann. Mittels dSTORM wird gezeigt, dass die Verteilung von Glykanen in der Plasmamembran unterschiedlicher Zelllinien homogen und frei von Clustern ist. Des Weiteren zeigt eine quantitative Analyse, dass sich in etwa fünf Millionen Glykane auf einer einzigen Zelle befinden. Die Ergebnisse demonstrieren, dass die Kombination aus metabolisch markierten Zielmolekülen, Click-Chemie und Einzelmolekül-Lokalisationsmikroskopie effizient genutzt werden kann, um Glykokonjugate auf Zelloberflächen zu untersuchen. In einem dritten Projekt wurde dSTORM zur Untersuchung von Rezeptormolekülen auf Krebszellen verwendet. Die Expression dieser Oberflächenproteine ist so gering, dass sich nur wenige Moleküle auf einer Zelle befinden, die jedoch als Zielmoleküle in der personalisierten Immuntherapie dienen könnten. Dafür wurden primäre Tumorzellen aus dem Knochenmark von Patienten, die am Multiplen Myelom erkrankt sind, auf die Expression des CD19-Oberflächenproteins als potentielles Ziel für CAR-modifizierte T-Zellen (chimeric antigen receptor) untersucht. Es wird gezeigt, dass sich, abhängig vom untersuchten Patienten, auf einer Zelle 60 bis 1600 CD19-Moleküle befinden. Funktionale in-vitro-Experimente demonstrieren, dass weniger als 100 CD19 Moleküle ausreichen, um CD19-CAR-T-Zellen zu aktivieren. Diese Ergebnisse werden mit Durchflusszytometrie-Daten verglichen und die wichtige Rolle von Lebendzellfärbung und geeigneten Kontrollexperimenten wird diskutiert. KW - Fluoreszenzmikroskopie KW - Quantifizierung KW - Polysaccharide KW - Immuntherapie KW - Antigen CD19 KW - super-resolution fluorescence microscopy KW - dSTORM KW - click chemistry KW - plasma membrane organization KW - localization microscopy KW - artifacts KW - Hochauflösende Fluoreszenzmikroskopie KW - Plasmamembranorganisation KW - Click Chemie KW - Glykane Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162139 ER - TY - THES A1 - ElBashir, Rasha T1 - Development of New Mass Spectrometry-based Methods for the Analysis of Posttranslational Modifications T1 - Entwicklung neuer massenspektrometrischer Methoden für die Analyse posttranslationaler Proteinmodifikationen N2 - Posttranslational modifications (PTMs) play a crucial role in many cellular processes. They are reversible, dynamic, and highly regulated events that alter the properties of proteins and increase their functional diversity. The identification and quantification of PTMs are critical for deciphering the molecular mechanisms of PTMs-related biological processes and disease treatment and prevention. Two of the most common and important PTMs that regulate many protein functions are acetylation and phosphorylation. An important role of acetylation is the regulation of DNA/RNA-protein interactions. A prominent example for this are histones, whose tail regions are lysine-rich and can be highly acetylated at their N-terminal domain. In spite of the utmost importance of this PTM, methods that allow the accurate measuring the site-specific acetylation degree are missing. One of the challenges in quantifying the acetylation degree at an individual lysine residue of the histones N-termini is the occurrence of multiple lysines in close proximity. Herein, we describe the development of the ”Fragment Ion Patchwork Quantification,” a new mass spectrometry-based approach for the highly accurate quantification of sites-pecific acetylation degrees. This method combines 13C1-acetyl derivatization on the protein level, proteolysis by low-specificity proteases and quantification on the fragment ion level. Acetylation degrees are determined from the isotope patterns of acetylated b and y ions. We have shown that this approach allows determining the site-specific acetylation degrees of all lysine residues for all core histones of Trypanosoma brucei. In addition, we demonstrate the use of this approach to identify the substrate sites of histone acetyltransferases and to monitor the changes in acetylation of the histones of canonical nucleosome and transcription start site nucleosomes. Phosphorylation is one of the most common and most important PTMs. The analysis of the human genome showed that there are about 518 kinases and more than 500,000 phosphorylation sites are believed to exist in the cellular proteome. Protein phosphorylation plays a crucial role in signaling many different cell processes, such as intercellular communication, cell growth, differentiation of proliferation and apoptosis. Whereas MS-based identification and relative quantification of singly phosphorylated peptides have been greatly improved during the last decade, and large-scale analysis of thousands of phosphopeptides can now be performed on a routine-base, the analysis of multi-phosphorylated peptides is still lagging vastly behind. The low pKa value of phosphate group and the associated negative charge are considered the major source of the problems with the analysis of multi-phosphorylated peptides. These problems include the formation of phosphopeptide-metal complexes during liquid chromatography (e.g. Fe 3+), which leads to a drastic deterioration of the chromatographic properties of these peptides (peak tailing), the decreased ionization efficiencies of phosphorylated peptides compared to their unphosphorylated counterparts, the labile nature of phosphate during CID/HCD fragmentation, and the unsuitability of low-charged phosphopeptides for ETD fragmentation are the most important factors that hinder phosphorylation analysis by LC-MS/MS. Here we aimed to develop a method for improving the identification of multi-phosphorylated peptides as well as the localization of phosphorylation sites by charge-reversal derivatization of the phosphate groups. This method employs a carbodiimide-mediated phosphoramidation to converted the phosphates to stable aromatic phosphoramidates. This chemical modification of phosphosite(s) reversed the negative charge of the phosphate group(s) and increased the number of the positive charges within the phosphopeptide. This modification prevented the formation of phosphopeptide-metal ion complexes that dramatically decreases or completely diminishes the signal intensity of protonated phosphopeptides, specifically multi-phosphorylated peptides. Furthermore, the increased net charge the (phospho-)peptides made them suitable for ETD fragmentation, which generated a high number of fragment ions with high intensities that led to a better phosphopeptide identification and localization of phosphosite(s) with high confidence. N2 - Posttranslationale Modifikationen (PTMs) spielen eine entscheidende Rolle in vielen zellulären Prozessen. Sie sind reversible, dynamische und hochregulierte Ereignisse, die die Proteineneigenschaften verändern und ihre funktionale Diversität erhöhen. Die Identifizierung und Quantifizierung von PTMs sind wesentlich für die Entschlüsselung der molekularen Mechanismen von PTM-regulierten biologischen Prozessen und für ein besseres Verständnis der Rolle posttranslationaler Modifikationen bei einer Vielzahl von Krankheiten. Zwei der bedeutendsten PTMs, welche die Funktion unzähliger Proteine regulieren sind die Acetylierung an Lysin-Resten und die Phosphorylierung an Serin-, Threonin- und Tyrosinresten. Im Rahmen dieser Arbeit wurden eine neue Methode zur Bestimmung des positionsspezifischen Acetylierungsgrades, sowie verbesserte Methoden für die Analyse der Phosphorylierung mittels Flüssigchromatographie-gekoppelter Tandem Massenspektrometrie entwickelt. Wir haben eine neue MS-basierte Methode (”Fragment Ion Patchwork Quantification”) entwickelt, welche es erlaubt die Acetylierungsgrade an individuellen Positionen mit hoher Genauigkeit zu messen. Diese Methode kombiniert die 13C1- Acetylderivatisierung von intakte Proteine, die Proteolyse durch Proteasen mit niedriger Spezifität, und die Quantifizierung auf dem MS2-Level. Die Acetylierungsgrade werden aus den Isotopenmustern von acetylierten b- und y-Ionen bestimmt. Obwohl unsere Methode zur Quantifizierung der positionsspezifischen Acetylierungsgrade auf jedes beliebige Protein angewandt werden kann, stand bei der Methodenentwicklung die Analyse der Histonacetylierung aufgrund ihrer herausragenden Bedeutung bei der Regulation der Genexpression im Vordergrund. Wir haben gezeigt, dass mit dieser Methode die Bestimmung der positionsspezifischen Acetylierungsgrade an allen Lysin Resten aller Core-Histone von Nukleosomhistone von Trypanosoma brucei möglich ist. Darüber hinaus haben wir diese Methode angewandt, um die Substrat-Positionen von Histon Acetyltransferasen zu identifizieren und um quantitative Veränderungen der Acetylierung an Histonen aus kanonischen Nukleosomen sowie Nukleosomen an Transkriptionsstartstellen zu analysieren. Phosphorylierung ist eine der häufigsten und wichtigsten posttranslational Proteinmodifikationen. Im Verlauf des Sequenzierung des humanen Genoms wurden 518 Gene für Proteinkinasen entdeckt und es wird angenommen, dass im zellulären Proteom mehr als 500 000 Phosphorylierungsstellen existieren. Die Proteinphosphorylierung spielet eine entscheidende Rolle in der Signalisierung vieler verschiedener Zellprozesse wie zum Beispiel der interzellulären Kommunikation, dem Zellwachstum, der Differenzierung der Proliferation und der Apoptose. Während bei der massenspektrometrie-basierte Identifizierung und relativen Quantifizierung von einfach phosphorylierten Peptiden in den letzten große Fortschritte erzielt wurden, und die Analyse tausender Phosphopeptide mittlerweile häufig routinemäßig durchgeführt werden kann, bereitet die massenspektrometrische Analyse merhfach phosphorylierter Peptide nach wie vor große Probleme. Der niedrige pKa-Wert der Phosphatgruppe, und die damit einhergehende negative Ladung ist die Hauptursache für die Probleme bei der Analyse merhfach phosphorylierter Peptide. Die mehrfache negative Ladung dieser Peptide führt zu einer ausgeprägten Neigung zur Komplexbildung mit mehrwertigen Metallionen (wie z.B. Fe3+), welche zu einer drmatischen Verschlechterung der chromatographischen Eigenschaften dieser Peptide führt (Peak Tailing), zu einer Verschlechterung der Ionisierungseffizienz, und zu einem ungewöhnlich niedrigen Protonierungsgrad im Positivionen-Modus, welcher diese Peptide für eine Fragmentierung mittels ETD ungeeignet macht. Im Rahmen dieser Arbeit wurde mittels chemischer Modifikation der Phosphatgruppe versucht sowohl die Detektion von mehrfach-phosphorylierten Peptiden, als auch die Lokalisierung von Phosphorylierungsstellen zu verbessern. Hierfür wurden die Phosphatgruppen unter Verwendung des Aktivierungsreagenzes EDC in hydrolysestabile, aromatische Phosphoramidate überführt. Die durch diese Modifikation erzielte Ladungsumkehr führt wie erwartet zu einer verbesserten Signalintensität bei den entsprechend modifizierten Phosphopeptiden, sowie zu einem verbesserten Fragmentierungsverhalten bei ETD, und somit letztlich zu einer verbesserten Lokalisierbarkeit der Phosphatgruppe inerhalb des Peptids. KW - LC-MS KW - Posttranslationale Änderung KW - Acetylierung KW - Phosphorylierung KW - Quantifizierung KW - Mass Spectrometry KW - PTMs KW - Acetylation KW - Quantitation KW - Phosphorylation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153731 ER - TY - THES A1 - Beer, Meike Vanessa T1 - Correlation of ligand density with cell behavior on bioactive hydrogel layers T1 - Korrelation der Ligandendichte mit Zellverhalten auf bioaktivierten Hydrogelschichten N2 - Diese Arbeit beschäftigte sich mit der Quantifizierung von Zelladhäsion vermittelnden Liganden in und auf dünnen Hydrogelschichten, die zur Oberflächenmodifizierung auf Biomaterialien aufgebracht wurden. Das bereits etablierte und gut charakterisierte inerte NCO-sP(EO-stat-PO) Hydrogelsystem, das eine einfache und reproduzierbare Bioaktivierung mit Peptiden erlaubt, wurde als Basis für diese Arbeit verwendet. Diese Hydrogele können auf zwei Weisen funktionalisiert werden. Liganden können entweder mit der Prepolymerlösung vor der Beschichtung gemischt (Einmischmethode) oder frische Hydrogelschichten mit einer Ligandenlösung inkubiert werden (Inkubationsmethode). Der erste Teil dieser in drei Hauptteile unterteilten Arbeit, beschäftigte sich mit der Konzentrationsbestimmung der Liganden in der gesamten Tiefe der Hydrogelschicht, während sich der zweite Teil auf die oberflächensensitive Quantifizierung von Zelladhäsion vermittelnden Molekülen an der biologischen Grenzfläche konzentrierte. Die Ergebnisse wurden mit Zelladhäsionskinetiken verglichen. Der dritte Teil dieser Arbeit beschäftigte sich mit der biochemischen als auch strukturellen Nachahmung der komplexen Extrazellulärmatrix (ECM). Das ECM Protein Fibronektin (FN) wurde über Zucker-Lektin Anbindung präsentiert und Zellverhalten auf diesen biomimetischen Oberflächen untersucht. Ebenfalls wurde Zellverhalten in einer dreidimensionalen Faserumgebung mit identischer Oberflächenchemie wie in den beiden ersten Teilen dieser Arbeit untersucht und mit der Peptidkonzentration korreliert. Insgesamt, war die Hauptfragestellung in dieser Arbeit ‘Wie viel?’, d.h. einerseits die Ermittlung der maximalen, als auch der für Zelladhäsion optimalen Ligandendichte. Im ersten praktischen Teil der vorliegenden Arbeit (Klassische Quantifizierung) wurden Liganden in der gesamten Hydrogelschicht, als auch speziell in oberen Bereichen der Schichten quantifiziert. Die Untersuchung der Hydrogelschichten in Wellplatten und auf Glas funktionalisiert mit GRGDS und 125I-YRGDS erfolgte in Kapitel 3 mittels Radioaktivmessung. Wurden Hydrogelschichten mittels Inkubationsmethode funktionalisiert, konnte eine Sättigung mit Liganden bei etwa 600 µg/mL ermittelt werden. Mittels Einmischmethode funktionalisierte Hydrogele erreichten keine maximale Ligandenkonzentration in den Schichten, mit dem Verhältnis 2/1 als maximales verwendetes Verhältnis. Höhere Liganden zu Prepolymer Verhältnisse als 2/1 wurden jedoch nicht verwendet, um eine ausreichende Vernetzung der Hydrogele nicht zu gefährden. Zur Detektion mittels Röntgenphotoelektronenspektroskopie (XPS) und Flugzeit-Sekundärionen-Massen-spektrometrie (TOF-SIMS) (Kapitel 4) wurden eine fluorierte Aminosäure und ein iodiertes Peptid mit den Prepolymeren in molaren Verhältnissen von 1/2, 1/1 und 2/1 gemischt. Beide Methoden ermittelten eine maximale Ligandenkonzentration bei Verhältnissen von 1/1. Zusätzliche Liganden (2/1) führten zu keiner vermehrten Anbindung. Wesentlich im Zusammenhang mit der Ligandenquantifizierung auf Biomaterialien ist, diese an der Oberfläche, die für Zellen zugänglich ist, durchzuführen. Im zweiten Teil dieser Arbeit (Oberflächensensitive Quantifizierung) kamen daher Methoden zum Einsatz, die Liganden ausschließlich auf der Oberfläche quantifizierten. Zur Detektion mit Oberflächenplasmon-resonanz (SPR) und akustischer Oberflächenwellentechnologie (SAW) in Kapitel 5 musste die Standardbeschichtung der Hydrogele von Glas und Silikon auf Cystamin funktionalisierte Goldoberflächen übertragen werden. Mittels Ellipsometrie und Rasterkraftmikroskopie (AFM) konnte nur eine dünne und inhomogene Hydrogelbeschichtung nachgewiesen werden. Dennoch zeigten SPR und SAW die Unterbindung von Serum und Streptavidin (SA) Adsorption auf nicht funktionalisierten Schichten, jedoch eine spezifische und konzentrationsabhängige SA Bindung auf Hydrogelschichten, die mit Biocytin und GRGDSK-biotin funktionalisiert wurden. Die Ligandenquantifizierung mittels Enzymgekoppeltem Immunadsorptionstest (ELISA) und Enzymgekoppelten Lektinadsorptionstest (ELLA) (Kapitel 6) wurde auf Hydrogelschichten in Wellplatten und auf Glas angewendet, die mit verschiedenen Liganden mittels Inkubation und Einmischung funktionalisiert wurden. Das Modellmolekül Biocytin, das biotinylierte Peptid GRGDSK-biotin, das ECM Protein Fibronektin (FN), als auch die Modellzucker N-Acetyl-glukosamin (GlcNAc) und N-Acetyllaktosamin (LacNAc) konnten spezifisch in verschiedenen Konzentrationen nachgewiesen werden. Beispielhaft seien hier Schichten auf Glas genannt, die mittels Einmischmethode mit GRGDSK-biotin funktionalisiert wurden, da diese zum Vergleich in Kapitel 8 herangezogen wurden. Auf diesen Oberflächen wurde eine maximale Peptidkonzentration auf der Oberfläche bei einem Peptid zu Prepolymer Verhältnis von 1/5 ermittelt. Neben diesen verschiedenen Quantifzierungsmethoden ist die in vitro Analyse mit Zellen nicht zu vernachlässigen (Kapitel 7). Hierzu wurden Hydrogele auf Glas aufgebracht und mit GRGDS mittels Einmischmethode funktionalisiert. Durch Zählen adhärenter primärer humaner dermaler Fibroblasten (HDF) auf Mikroskopbildern wurde eine maximale Zelladhäsion bei dem Peptid zu Prepolymer Verhältnis von 1/5 festgestellt. Hingegen wurde ein Verhältnis von 1/2 für optimale Zelladhäsion ermittelt, wenn Zellen zur Quantifizierung von den Hydrogelen abgelöst und im CASY® Zellzähler quantifiziert wurden. Zusätzlich wurde die Zellvitalität durch Messung intrazellulärer Enzymaktivitäten gemessen, jedoch konnte kein Zusammenhang zwischen Zellvitalität und GRGDS Konzentration hergestellt werden. Adhärente HDFs waren in allen Fällen vital, unabhängig von der Ligandenkonzentration auf der Oberfläche. Auch die Mausfibroblasten Zelllinie NIH L929 wurde auf Hydrogelen mit verschiedenen GRGDS zu Prepolymer Verhältnissen durch Zählen adhärenter Zellen auf Mikroskopbildern untersucht. Diese im Verhältnis zu HDFs wesentlich kleineren Mauszellen benötigten höhere GRGDS Konzentrationen (2/1) für maximale Zelladhäsion. Nach der Ligandenquantifizierung in Kapitel 3 bis 7, wurden diese Ergebnisse in Kapitel 8 miteinander verglichen. Hierzu wurden Messungen auf Hydrogelschichten verwendet, die mittels Einmischmethode funktionalisiert wurden. Während die Quantifizierung mittels Radioaktivmessung in der gesamten Tiefe der Hydrogelschichten keine maximale Ligandenkonzentration ermitteln konnte, war in den oberen Bereichen der Schicht ein Maximum an Liganden bei 1/1 festzustellen (XPS, TOF-SIMS). SPR und SAW wurden zum Vergleich nicht herangezogen, da die Beschichtung auf Gold erst optimiert werden muss. Oberflächensensitive Quantifizierung mittels ELISA und Zelladhäsion, die lediglich die sterisch zugänglichen Liganden auf einer Oberfläche nachweisen, ergaben übereinstimmend eine optimale Ligandenkonzentration für SA Bindung und Zelladhäsion bei einem Peptid zu Prepolymer Verhältnis von 1/5. Dies unterstreicht, wie wichtig der Vergleich der Methoden, als auch die Verwendung von oberflächensensitiven Methoden ist. Der dritten Teil dieser Arbeit beschäftigte sich mit der biochemischen und strukturellen Nachahmung der komplexen extrazellulären Umgebung (Advanced ECM engineering), ein wichtiger Aspekt in der Biomaterialforschung, da zum größten Teil zwei-dimensionale Biomaterialien zum Einsatz kommen, die direkt mit Liganden kovalent funktionalisiert werden. Die ECM ist jedoch um ein Vielfaches komplexer und die bestmögliche Nachahmung ist Voraussetzung für eine bessere Akzeptanz durch Zellen und Gewebe. In Kapitel 9 wurde eine Möglichkeit aufgezeigt, das ECM Protein FN nicht-kovalent über Zucker-Lektinbindungen zu immobilisieren. Ein Schichtaufbau von Hydrogel, dem darauf durch Mikrokontakt-druckverfahren (MCP) kovalent gebundenen Zucker Poly-N-Acetyllaktosamin (polyLacNAc) und den darauf nicht-kovalent gebundenen Galektin His6CGL2 und FN, konnte mit Fluoreszenzfärbung elegant nachgewiesen werden. Optimale Konzentrationen für den Schichtaufbau wurden mittels ELLA/ELISA auf Hydrogelschichten ermittelt, die durch Inkubation mit dem Zucker funktionalisiert wurden. Nur der komplette Schichtaufbau konnte zufriedenstellende HDF Adhäsion vermitteln und im Vergleich zu Zellkulturpolystyrol (TCPS) Oberflächen konnten HDFs auf dem biomimetischen Schichtaufbau schneller adhärieren und spreiten. Zudem wurde die Umorganisierung von auf Glas adsorbiertem FN, auf NCO-sP(EO-stat-PO) kovalent gebundenem FN und biomimetisch über polyLAcNAc-His6CGL2 gebundenem FN durch HDFs verglichen. Nur auf den biomimetischen Oberflächen schien eine Umorganisation durch die Zellen möglich, wie sie auch in der ECM zu finden ist. Diese biomimetische und flexible Präsentation eines Proteins erwies sich als vielversprechende Möglichkeit eine biomimetischere Oberfläche für Zellen zu schaffen, die eine optimale Biokompatibilität ermöglichen könnte. Auch die strukturelle Nachahmung der ECM ist eine vielversprechende Strategie zum Nachbau der ECM. In Kapitel 10 wurde ein Einschrittverfahren zur Herstellung synthetischer, bioaktiver und degradierbarer Faserkonstrukte durch Elektrospinnen zur Nachahmung der ECM präsentiert. In diesem System wurden durch Zugabe von NCO-sP(EO-stat-PO) als reaktives Additiv zu Poly(D,L-laktid-co-Glycolid) (PLGA) Fasern hergestellt, die mit einer ultradünnen, inerten Hydrogelschicht versehen waren. Es konnte gezeigt werden, dass durch die Verwendung von NCO-sP(EO-stat-PO) als Additiv die Adsorption von Rinderserumalbumin (BSA) im Vergleich zu PLGA um 99,2% reduziert, die Adhäsion von HDFs verhindert und die Adhäsion von humanen mesenchymalen Stammzellen (MSC) minimiert werden konnten. Spezifische Bioaktivierung wurde durch Zugabe von Peptidsequenzen zur Spinlösung erreicht, welche kovalent in die Hydrogelschicht eingebunden werden konnten und kontrollierte Zell-Faser Interaktionen ermöglichten, Um die spezifische Zelladhäsion an solchen inerten Fasern zu erzielen, wurde GRGDS kovalent auf der Faseroberfläche gebunden. Dies erfolgte durch Zugabe des Peptids zur Polymerlösung vor dem Elektrospinnen. Als Negativkontrolle wurde die Peptidsequenz GRGES an die Faseroberfläche gebunden, welche durch Zellen nicht erkannt wird. Während die Verhinderung unspezifischer Proteinadsorption für die Peptidmodifizierten Fasern erhalten blieb, konnten HDFs lediglich auf den mit GRGDS Peptid modifizierten Fasern adhärieren, proliferieren und nach zwei Wochen eine konfluente Zellschicht aus vitalen Zellen bilden. Zusätzlich konnten MSCs auf GRGDS funktionalisierten Fasern adhärieren. Liganden konnten auf Fasern quantifiziert werden, indem die ELISA Technik aus Kapitel 6 auf Faseroberflächen transferiert wurde. Um das Potential der biochemischen und strukturellen Nachbildung der ECM aufzuzeigen, wurden beide Ansätze miteinander kombiniert. Die Immobilisierung von polyLacNAc auf die Hydrogelfasern durch Inkubation und der Schichtaufbau mit His6CGL2 und FN resultierte in HDF Adhäsion. N2 - This thesis concerned the quantification of cell adhesion molecules (CAM) in and on thin hydrogel films as surface modification of biomaterials. The established and well characterized, per se inert NCO-sP(EO-stat-PO) hydrogel system which allows the easy and reproducible bioactivation with peptides was used as basis for this thesis. Two methods can be used to functionalize the coatings. Ligands can either be mixed into the prepolymer solution in prior to layer formation (mix-in method), or freshly prepared coatings can be incubated with ligand solution (incubation method). Divided into three major parts, the first part of the thesis dealt with the concentration of ligands in the bulk hydrogel, whereas the second part of the thesis focused on the surface sensitive quantification of CAMs at the biointerface. The results were correlated with cell adhesion kinetics. The third part of this thesis investigated the biochemical and the structural mimicry of the extracellular matrix (ECM). ECM proteins were presented via sugar-lectin mediated binding and cell behavior on these surfaces was analyzed. Cell behavior on three-dimensional fibers with identical surface chemistry as the coatings in the previous sections of the thesis was analyzed and correlated with the amount of peptide used for bioactivation. Overall, the main question of this work was ‘How much?’ regarding maximal as well as optimal ligand concentrations for controlled cell-hydrogel interactions. The focus in the first practical part of this thesis was to analyze the amount of ligands in NCO-sP(EO-stat-PO) hydrogels using classical quantification methods. Coatings in 96-well plates as well as on glass were functionalized with GRGDS and 125I-YRGDS for radioisotopic detection (Chapter 3). Using the incubation method for functionalization, a maximal ligand binding using peptide concentrations of 600 µg/mL could be determined. When functionalization was introduced via the mix-in method, a clear tendency for higher ligand concentrations with increasing ligand to prepolymer ratio was observed, but no maximal ligand binding could be detected with a ligand to prepolymer ratio of 2/1 being the highest ratio investigated. This ratio of 2/1 was not exceeded to ensure that complete crosslinking of the hydrogel was not affected. In Chapter 4, a fluorinated amino acid and an iodinated peptide were immobilized to the hydrogels using the mix-in method and were detected by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In these measurements, maximal ligand binding was detected for a ligand to prepolymer ratio of 1/1. Higher ligand to prepolymer ratios did not result in any significant increase in ligand concentrations in the surface near regions of the crosslinked hydrogels. To address the question of how many ligands were actually accessible for cell interaction at the interface, surface sensitive quantification methods were applied in the second part of this thesis. For the quantification with surface plasmon resonance (SPR) and surface acoustic wave technology (SAW) (Chapter 5), the hydrogel coating procedure needed to be transferred onto cystamine functionalized gold surfaces. Characterization with ellipsometry and atomic force microscopy (AFM) revealed inhomogeneous cystamine binding to the activated surfaces, which resulted in inhomogeneous coatings. Nevertheless, it could be shown that SPR as well as SAW were suitable methods for the surface sensitive quantification of the ligand concentration on NCO-sP(EO-stat-PO) hydrogels. Non-functionalized coatings resisted non-specific serum as well as streptavidin (SA) adsorption. Coatings functionalized with biocytin and GRGDSK-biotin introduced specific SA binding that was dependent on the biotin concentration at the surface. Additionally, enzyme linked immunosorbent assay (ELISA) and enzyme linked lectin assay (ELLA) (Chapter 6) were applied to coatings in 96-well plates and on glass. Coatings were functionalized with the model molecule biocytin, the biotinylated peptide GRGDSK-biotin, the ECM protein fibronectin (FN), as well as the carbohydrates N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc). All ligands could be successfully detected with antibodies or SA via ELISA or ELLA. Maximal GRGDSK-biotin binding to the hydrogel coatings on glass was achieved at a peptide to prepolymer ratio of 1/5, which was used as reference value in Chapter 8. Last but not least, cell adhesion (Chapter 7) was quantified depending on the GRGDS concentration on hydrogel coatings on glass. Maximal adhesion of primary human dermal fibroblast (HDF) was observed at GRGDS to prepolymer ratios of 1/5, when adherent cells were counted on life cell images. Quantification of adherent cells using the CASY® cell counter revealed maximal HDF adhesion at molar ligand to prepolymer ratios of 1/2. However, cell vitality detected by intracellular enzyme activities was not dependent on the GRGDS concentration. Cells which managed to adhere were vital regardless of the amount of ligands present. Additionally, adhesion of fibroblasts from the murine cell line NIH L929 was analyzed by counting on life cell images. These cells, being much smaller than the HDF cells, needed higher GRGDS to prepolymer ratios (2/1) for proper cell adhesion. All quantification methods applied to analyze hydrogels which were functionalized by the mix-in method in Chapter 3, 4, 6 and 7, were compared in Chapter 8. Radiodetection gave information about the ligand concentrations throughout the whole hydrogel and no maximal amount of ligands could be detected when increasing the peptide to prepolymer ratio. In contrast, XPS and TOF-SIMS which only penetrated the surface near regions of the coating, a maximal ligand binding to the hydrogel was detected for 1/1 ratios. SPR and SAW were not included in this comparison, as the coatings on gold need to be optimized first. The two surface sensitive quantification methods (ELISA and HDF adhesion) could give information about the quantity of peptide which was sterically available for SA or cell binding. With these methods, maximal SA and cell binding was detected at ratios of 1/5. These results underline the importance of carefully compare the different methods. Beside ligand quantification on hydrogels, the third part of this thesis was concerned with the biochemical and structural mimicry of the ECM by advanced ECM engineering to design biomimetic biomaterials that are better accepted by cells and tissue. The subject of Chapter 9 was the biomimetic and flexible presentation of the ECM protein FN. FN was attached via sugar-lectin mediated binding to NCO-sP(EO-stat-PO) hydrogels. The build-up of the covalently immobilized sugar poly-N-acetyllactosamine (polyLacNAc), the subsequent non-covalent binding of the fungal galectin His6CGL2, and FN could be elegantly proven by fluorescent staining on coatings which were functionalized with the sugar by micro contact printing (MCP). Further experiments were carried out on build-ups, where polyLacNAc was immobilized on the hydrogel by incubation. Optimal parameters for the layer build-up were determined by ELLA/ELISA. Only the complete build-up induced proper adhesion of HDFs. Compared to tissue culture polystyrene (TCPS), cells adhered and spread faster on the biomimetic surfaces. The flexible presentation of FN allowed HDFs to rearrange homogenously immobilized FN into fibrillar structures, which seemed not to be possible when FN was adsorbed on glass or covalently bound directly to the hydrogel coatings. This new approach of a flexible and biomimetic presentation of an ECM protein allows new ways to design biomaterials with best possible cell-material interactions. The work described in Chapter 10 focused on the structural mimicry of the fibrous ECM structures by electrospinning of synthetic, bioactive, and degradable fibers. Poly(D,L-lactide-co-glycolide) (PLGA) and NCO-sP(EO-stat-PO) were electrospun out of one solution in an easy one-step preparation resulting in fibers with an ultrathin inert hydrogel layer at the surface. By adding GRGDS to the solution prior to electrospinning, specifically interacting fibers could be obtained. In comparison to PLGA, the adsorption of bovine serum albumin (BSA) could be reduced by 99.2%. As a control, the non-active peptide GRGES was immobilized to the fiber. These fibers did not allow cell adhesion, showing that the integrity of the hydrogel coated fibers was not affected by the immobilization of peptides. HDF adhesion was obtained by functionalization with GRGDS, leading to the adhesion, spreading, and proliferation of HDFs. Also mesenchymal stem cells (MSC) could adhere to GRGDS functionalized fibers. Additionally, for ligand quantification, the ELISA technique was successfully transferred to fiber substrates. To highlight the potential of the approaches for the biochemical and structural mimicry of the ECM, the sugar polyLacNAc was immobilized on the PLGA/sP(EO-stat-PO) fibers followed by the subsequent layer build-up with His6CGL2 and FN. These fibers triggered HDF adhesion. KW - Hydrogel KW - Biomaterial KW - Zelladhäsion KW - Adsorption KW - Ligand KW - Quantifizierung KW - Proteinadsorption KW - Funktionalisierung KW - protein adsorption Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74454 ER -