TY - JOUR A1 - Poetzsch, Tristan A1 - Germanakos, Panagiotis A1 - Huestegge, Lynn T1 - Toward a Taxonomy for Adaptive Data Visualization in Analytics Applications JF - Frontiers in Artificial Intelligence N2 - Data analytics as a field is currently at a crucial point in its development, as a commoditization takes place in the context of increasing amounts of data, more user diversity, and automated analysis solutions, the latter potentially eliminating the need for expert analysts. A central hypothesis of the present paper is that data visualizations should be adapted to both the user and the context. This idea was initially addressed in Study 1, which demonstrated substantial interindividual variability among a group of experts when freely choosing an option to visualize data sets. To lay the theoretical groundwork for a systematic, taxonomic approach, a user model combining user traits, states, strategies, and actions was proposed and further evaluated empirically in Studies 2 and 3. The results implied that for adapting to user traits, statistical expertise is a relevant dimension that should be considered. Additionally, for adapting to user states different user intentions such as monitoring and analysis should be accounted for. These results were used to develop a taxonomy which adapts visualization recommendations to these (and other) factors. A preliminary attempt to validate the taxonomy in Study 4 tested its visualization recommendations with a group of experts. While the corresponding results were somewhat ambiguous overall, some aspects nevertheless supported the claim that a user-adaptive data visualization approach based on the principles outlined in the taxonomy can indeed be useful. While the present approach to user adaptivity is still in its infancy and should be extended (e.g., by testing more participants), the general approach appears to be very promising. KW - graph adaptivity KW - data visualization KW - user model KW - analytics KW - graph ergonomics KW - recommendation engine Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202074 SN - 2624-8212 VL - 3 ER - TY - JOUR A1 - Schwalb‐Willmann, Jakob A1 - Remelgado, Ruben A1 - Safi, Kamran A1 - Wegmann, Martin T1 - moveVis: Animating movement trajectories in synchronicity with static or temporally dynamic environmental data in R JF - Methods in Ecology and Evolution N2 - Visualizing movement data is challenging: While traditional spatial data can be sufficiently displayed as two‐dimensional plots or maps, movement trajectories require the representation of time in a third dimension. To address this, we present moveVis, an R package, which provides tools to animate movement trajectories, overlaying simultaneous uni‐ or multi‐temporal raster imagery or vector data. moveVis automates the processing of movement and environmental data to turn such into an animation. This includes (a) the regularization of movement trajectories enforcing uniform time instances and intervals across all trajectories, (b) the frame‐wise mapping of movement trajectories onto temporally static or dynamic environmental layers, (c) the addition of customizations, for example, map elements or colour scales and (d) the rendering of frames into an animation encoded as GIF or video file. moveVis is designed to display interactions and concurrencies of animal movement and environmental data. We present examples and use cases, ranging from data exploration to visualizing scientific findings. Static spatial plots of movement data disregard the temporal dimension that distinguishes movement from other spatial data. In contrast, animations allow to display relocation in both time and space. We deem animations a powerful way to visually explore movement data, frame analytical findings and display potential interactions with spatially continuous and temporally dynamic environmental covariates. KW - animal tracking KW - animation KW - data visualization KW - movement data KW - movement ecology KW - spatio‐temporal data Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214856 VL - 11 IS - 5 SP - 664 EP - 669 ER -