TY - THES A1 - Hugo, Julian T1 - ‘Signal-close-to-noise’ calcium activity reflects neuronal excitability T1 - ‘Signal-close-to-noise’ Kalziumaktivität als Ausdruck neuronaler Erregbarkeit N2 - Chronic pain conditions are a major reason for the utilization of the health care system. Inflammatory pain states can persist facilitated by peripheral sensitization of nociceptors. The voltage-gated sodium channel 1.9 (NaV1.9) is an important regulator of neuronal excitability and is involved in inflammation-induced pain hypersensitivity. Recently, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (OxPAPC) was identified as a mediator of acute inflammatory pain and persistent hyperalgesia, suggesting an involvement in proalgesic cascades and peripheral sensitization. Peripheral sensitization implies an increase in neuronal excitability. This thesis aims to characterize spontaneous calcium activity in neuronal compartments as a proxy to investigate neuronal excitability, making use of the computational tool Neural Activity Cubic (NA3). NA3 allows automated calcium activity event detection of signal-close-to-noise calcium activity and evaluation of neuronal activity states. Additionally, the influence of OxPAPC and NaV1.9 on the excitability of murine dorsal root ganglion (DRG) neurons and the effect of OxPAPC on the response of DRG neurons towards other inflammatory mediators (prostaglandin E2, histamine, and bradykinin) is investigated. Using calcium imaging, the presence of spontaneous calcium activity in murine DRG neurons was established. NA3 was used to quantify this spontaneous calcium activity, which revealed decreased activity counts in axons and somata of NaV1.9 knockout (KO) neurons compared to wildtype (WT). Incubation of WT DRG neurons with OxPAPC before calcium imaging did not show altered activity counts compared to controls. OxPAPC incubation also did not modify the response of DRG neurons treated with inflammatory mediators. However, the variance ratio computed by NA3 conclusively allowed to determine neuronal activity states. In conclusion, my findings indicate an important function of NaV1.9 in determining the neuronal excitability of DRG neurons in resting states. OxPAPC exposition does not influence neuronal excitability nor sensitizes neurons for other inflammatory mediators. This evidence reduces the primary mechanism of OxPAPC-induced hyperalgesia to acute effects. Importantly, it was possible to establish an approach for unbiased excitability quantification of DRG neurons by calcium activity event detection and calcium trace variance analysis by NA3. It was possible to show that signal-close-to-noise calcium activity reflects neuronal excitability states. N2 - Entzündliche Schmerzzustände können lange fortbestehen, was durch eine periphere Sensibilisierung von Nozizeptoren begünstigt wird. Der spannungsgesteuerte Natriumkanal 1.9 (NaV1.9) ist ein wichtiger Regulator neuronaler Erregbarkeit und ist nachweislich an entzündungsbedingter Schmerzüberempfindlichkeit beteiligt. Kürzlich wurde oxidiertes 1-Palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholin (OxPAPC) als Mediator akuter Entzündungsschmerzen und anhaltender Hyperalgesie identifiziert, was auf eine Beteiligung an Mechanismen der peripheren Sensibilisierung hindeutet. Periphere Sensibilisierung setzt eine Erhöhung der neuronalen Erregbarkeit voraus. In dieser Arbeit soll neuronale spontane Kalziumaktivität charakterisiert werden, um Rückschlüsse auf die neuronale Erregbarkeit zu ziehen. Dazu wurde das Tool Neural Activity Cubic (NA3) eingesetzt, welches die automatisierte Detektion von „signal-close-to-noise“ Kalziumaktivitätsereignissen und die Bewertung neuronaler Aktivitätszustände erlaubt. Mittels NA3 wurde der Einfluss von OxPAPC und NaV1.9 auf die Erregbarkeit von murinen Spinalganglion (DRG)-Neuronen untersucht. Zusätzlich wurde die Reaktion von DRG-Neuronen auf weitere Entzündungsmediatoren (Prostaglandin E2, Histamin und Bradykinin) nach Inkubation mit OxPAPC beurteilt. Mittels Calcium-Imaging konnte spontane Kalziumaktivität in murinen DRG-Neuronen identifiziert werden. NA3 wurde verwendet, um diese spontane Kalziumaktivität zu quantifizieren. NaV1.9 Knockout-Neuronen (KO) zeigten signifikant Verringerte Kalziumaktivität im Vergleich Wildtyp (WT)-Neuronen. Die Inkubation von WT-Neuronen mit OxPAPC vor Calcium-Imaging resultierte in unveränderter Kalziumaktivität. Eine OxPAPC-Inkubation hatte ebenso keinen Einfluss auf die Reaktion von DRG-Neuronen, die mit einem Gemisch aus Entzündungsmediatoren stimuliert wurden. Die von NA3 berechnete „variance ratio“ ermöglichte jedoch eine eindeutige Bestimmung der neuronalen Aktivitätszustände. Zusammenfassend weisen meine Ergebnisse auf eine wichtige Funktion von NaV1.9 bei der Bestimmung der neuronalen Erregbarkeit von DRG-Neuronen im Ruhezustand hin. Eine Exposition mit OxPAPC beeinflusst allerdings weder die neuronale Erregbarkeit noch werden Neuronen für andere Entzündungsmediatoren sensibilisiert. Dies legt akute Effekte als primären Mechanismus der OxPAPC-induzierten Hyperalgesie nahe. Es war möglich, eine Methode für die unverzerrte Quantifizierung neuronaler Erregbarkeit von durch die Erkennung von Kalziumaktivitätsereignissen und die Varianzanalyse von Kalziumsignalen mit NA3 zu etablieren. Es konnte gezeigt werden, dass die „signal-close-to-noise“ Kalziumaktivität den Zustand der neuronalen Erregbarkeit widerspiegelt. KW - Entzündung KW - Schmerz KW - Natriumkanal KW - Erregbarkeit KW - Phospholipide KW - neuronal excitability KW - NaV1.9 KW - inflammatory pain KW - calcium activity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-292605 ER - TY - THES A1 - Mayer, Rafaela T1 - OxPAPC as an endogenous agonist of TRPA1 channels on nociceptors T1 - OxPAPC als endogener Agonist von TRPA1 Kanälen auf Nozizeptoren N2 - Non-steroidal antiinflammatory drugs are most commonly used for inflammatory and postoperative pain. But they lack effectiveness and specificity, leading to severe side effects, like gastric ulcers, asthma and severe bleeding. Oxidized 1-palmitoyl-2-arachinidonoyl-sn-glycero-3-phosphocholine (OxPAPC) plays an important role in inflammatory pain. PAPC is a common phosphatidylcholine of membranes, which can be oxidized by reactive oxygen species. In preliminary experiments, our group found that local injection of OxPAPC in rat paws induces hyperalgesia. In this study we examined the effect of OxPAPC on transient receptor potential A1 (TRPA1), an ion channel expressed in C-fiber neurons. Furthermore, we investigated if intracellular cysteine residues of TRPA1 were necessary for agonist-channel-interactions and if a subsequent TRPA1 activation could be prevented by OxPAPC scavengers. To answer these questions, we performed calcium imaging using HEK-293 cells stably expressing hTRPA1, or transiently expressing the triple mutant channel hTRPA1-3C and naïve DRG neurons. Cells were incubated with the ratiometric, fluorescent dye Fura-2/AM and stimulated with OxPAPC. The change of light emission after excitation with 340 and 380 nm wavelengths allowed conclusions regarding changes of intracellular calcium concentrations after TRPA1 activation. In our investigation we proved evidence that OxPAPC activates TRPA1, which caused a flow of calcium ions into the cytoplasm. The TRPA1-specific channel blocker HC-030031 eliminated this agonist-induced response. TRPA1-3C was not completely sensitive to OxPAPC. The peptide D-4F and the monoclonal antibody E06 neutralized OxPAPC-induced TRPA1 activation. In this work, the importance of OxPAPC as a key mediator of inflammatory pain and as a promising target for drug design is highlighted. Our results indicate that TRPA1 activation by OxPAPC involves cysteine-dependent mechanisms, but there are other, cysteine-independent activation mechanisms as well. Potential pharmaceuticals for the treatment of inflammatory pain are D-4F and E06, whose efficiency has recently been confirmed in the animal model by our research group. N2 - Nichtsteroidale Antiphlogistika werden bei Entzündungs- und postoperativen Schmerzen eingesetzt. Ihre mangelnde Effektivität und Spezifität kann jedoch starke Nebenwirkungen wie Magen-Darmulzera, Analgetikaasthma und Blutungen hervorgerufen. Hyperalgesie kann in Entzündungsprozessen lokal durch das oxidierte Phospholipid 1-Palmitoyl-2-Arachinidonoyl-sn-Glycero-3- Phosphocholin (OxPAPC) induziert werden, welches durch Oxidation mit reaktiven Sauerstoffspezies entsteht. Vorarbeiten unserer Arbeitsgruppe zeigten, dass OxPAPC nach intraplantarer Injektion in Rattenpfoten Hyperalgesie hervorruft. In dieser Arbeit steht die Interaktion zwischen OxPAPC und dem „transient receptor potential A 1“ Kanal (TRPA1), einem Ionenkanal von C-Faser-Neuronen, im Fokus. Es wurde untersucht, ob intrazelluläre Cysteinreste zur Aktivierung durch oxidierte Phospholipide beitragen und ob diese durch einen OxPAPC-spezifischen Antagonismus verhindert werden kann. Zur Klärung der Fragestellung verwendeten wir HEK-293 Zellen, die entweder hTRPA1 stabil oder den an drei Positionen mutierten hTRPA1-C3 transient exprimierten und native DRG Neurone. Die Änderung der intrazellulären Kalziumionenkonzentration nach Kanalmodulation mit OxPAPC wurde mittels ratiometrischer Fura-2/AM-Experimente bestimmt. Wir zeigten, dass OxPAPC zur Aktivierung von TRPA1 führt, welche sich nach Zugabe des spezifischen Antagonisten HC-030031 als reversibel erwies. Sind drei Cysteine des intrazelllulären Aminoterminus von TRPA1 mutiert, wurde ein Anstieg der intrazellulären Kalziumkonzentration durch OxPAPC verringert. Das Peptid D-4F und der monoklonale Antikörper E06 neutralisierten die Wirkung von OxPAPC auf den Kanal. Das in Entzündungsprozessen gebildete OxPAPC ist ein endogener Agonist von TRPA1 Kanälen und stellt damit eine potentielle pharmakologische Zielsubstanz für die Entwicklung von Analgetika dar. Naheliegend ist, dass die Aktivierung von TRPA1 durch OxPAPC über Cysteinbindungsstellen erfolgen kann. Jedoch sind weitere, cysteinunabhängige Mechanismen ebenfalls wahrscheinlich. D-4F und E06 sind vielversprechende neuartige Substanzen für die Behandlung von Entzündungsschmerz. Ihre analgetische Wirkung wurde bereits im Tiermodell durch unsere Arbeitsgruppe bestätigt. KW - Schmerzforschung KW - Phospholipide KW - Entzündung KW - Schmerztherapie KW - Ionenkanal KW - TRPA1 channel KW - Oxidized Phospholipids KW - Inflammatory Pain KW - Nociceptor KW - DRG Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175890 ER -