TY - JOUR A1 - Heß, Merlin A1 - Krummenacher, Ivo A1 - Dellermann, Theresa A1 - Braunschweig, Holger T1 - Rhodium-Mediated Stoichiometric Synthesis of Mono-, Bi-, and Bis-1,2-Azaborinines: 1-Rhoda-3,2-azaboroles as Reactive Precursors JF - Chemistry—A European Journal N2 - A series of highly substituted 1,2-azaborinines, including a phenylene-bridged bis-1,2-azaborinine, was synthesized from the reaction of 1,2-azaborete rhodium complexes with variously substituted alkynes. 1-Rhoda-3,2-azaborole complexes, which are accessible by phosphine addition to the corresponding 1,2-azaborete complexes, were also found to be suitable precursors for the synthesis of 1,2-azaborinines and readily reacted with alkynyl-substituted 1,2-azaborinines to generate new regioisomers of bi-1,2-azaborinines, which feature directly connected aromatic rings. Their molecular structures, which can be viewed as boron-nitrogen isosteres of biphenyls, show nearly perpendicular 1,2-azaborinine rings. The new method using rhodacycles instead of 1,2-azaborete complexes as precursors is shown to be more effective, allowing the synthesis of a wider range of 1,2-azaborinines. KW - structure elucidation KW - azaborinines KW - nitrogen heterocycles KW - cyclization KW - metallacycles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256830 VL - 27 IS - 37 ER - TY - JOUR A1 - Zhang, Chonghe A1 - Liu, Xiaocui A1 - Wang, Junyi A1 - Ye, Qing T1 - A Three-Dimensional Inorganic Analogue of 9,10-Diazido-9,10-Diboraanthracene: A Lewis Superacidic Azido Borane with Reactivity and Stability JF - Angewandte Chemie N2 - Herein, we report the facile synthesis of a three-dimensional (3D) inorganic analogue of 9,10-diazido-9,10-dihydrodiboraantracene, which turned out to be a monomer in both the solid and solution state, and thermally stable up to 230 °C, representing a rare example of azido borane with boosted Lewis acidity and stability in one. Apart from the classical acid-base and Staudinger reactions, E−H bond activation (E=B, Si, Ge) was investigated. While the reaction with B−H (9-borabicyclo[3.3.1]nonane) led directly to the 1,1-addition on N\(_{α}\) upon N\(_{2}\) elimination, the Si−H (Et\(_{3}\)SiH, PhMe\(_{2}\)SiH) activation proceeded stepwise via 1,2-addition, with the key intermediates 5\(_{int}\) and 6\(_{int}\) being isolated and characterized. In contrast, the cooperative Ge−H was reversible and stayed at the 1,2-addition step. KW - E-H bond activation KW - boracycle KW - azido borane KW - lewis superacid KW - structure elucidation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318322 VL - 61 IS - 36 ER -