TY - JOUR A1 - Rushdi, Mohammed I. A1 - Abdel-Rahman, Iman A. M. A1 - Attia, Eman Zekry A1 - Saber, Hani A1 - Saber, Abdullah A. A1 - Bringmann, Gerhard A1 - Abdelmohsen, Usama Ramadan T1 - The biodiversity of the genus Dictyota: phytochemical and pharmacological natural products prospectives JF - Molecules N2 - Although a broad variety of classes of bioactive compounds have already been isolated from seaweeds of the genus Dictyota, most different species are still chemically and biologically unexplored. Dictyota species are well-known brown seaweeds belonging to the Dictyotaceae (Phaeophyta). The phytochemical composition within the genus Dictyota has recently received considerable interest, and a vast array of components, including diterpenes, sesquiterepenes, sterols, amino acids, as well as saturated and polyunsaturated fatty acids, have been characterized. The contribution of these valued metabolites to the biological potential, which includes anti-proliferative, anti-microbial, antiviral, antioxidant, anti-inflammatory, and anti-hyperpigmentation activities, of the genus Dictyota has also been explored. Therefore, this is the most comprehensive review, focusing on the published literature relevant to the chemically and pharmacologically diverse biopharmaceuticals isolated from different species of the genus Dictyota during the period from 1976 to now. KW - Phaeophyceae KW - Dictyotaceae KW - marine macroalgae KW - brown seaweeds KW - natural products KW - bioactivities KW - Dictyota Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302428 SN - 1420-3049 VL - 27 IS - 3 ER - TY - JOUR A1 - Al-Warhi, Tarfah A1 - Elmaidomy, Abeer H. A1 - Maher, Sherif A. A1 - Abu-Baih, Dalia H. A1 - Selim, Samy A1 - Albqmi, Mha A1 - Al-Sanea, Mohammad M. A1 - Alnusaire, Taghreed S. A1 - Ghoneim, Mohammed M. A1 - Mostafa, Ehab M. A1 - Hussein, Shaimaa A1 - El-Damasy, Ashraf K. A1 - Saber, Entesar Ali A1 - Elrehany, Mahmoud A. A1 - Sayed, Ahmed M. A1 - Othman, Eman M. A1 - El-Sherbiny, Mohamed A1 - Abdelmohsen, Usama Ramadan T1 - The wound-healing potential of Olea europaea L. Cv. Arbequina leaves extract: an integrated in vitro, in silico, and in vivo investigation JF - Metabolites N2 - Olea europaea L. Cv. Arbequina (OEA) (Oleaceae) is an olive variety species that has received little attention. Besides our previous work for the chemical profiling of OEA leaves using LC–HRESIMS, an additional 23 compounds are identified. An excision wound model is used to measure wound healing action. Wounds are provided with OEA (2% w/v) or MEBO\(^®\) cream (marketed treatment). The wound closure rate related to vehicle-treated wounds is significantly increased by OEA. Comparing to vehicle wound tissues, significant levels of TGF-β in OEA and MEBO\(^®\) (p < 0.05) are displayed by gene expression patterns, with the most significant levels in OEA-treated wounds. Proinflammatory TNF-α and IL-1β levels are substantially reduced in OEA-treated wounds. The capability of several lignan-related compounds to interact with MMP-1 is revealed by extensive in silico investigation of the major OEA compounds (i.e., inverse docking, molecular dynamics simulation, and ΔG calculation), and their role in the wound-healing process is also characterized. The potential of OEA as a potent MMP-1 inhibitor is shown in subsequent in vitro testing (IC\(_{50}\) = 88.0 ± 0.1 nM). In conclusion, OEA is introduced as an interesting therapeutic candidate that can effectively manage wound healing because of its anti-inflammatory and antioxidant properties. KW - olive KW - LC–HRESIMS KW - wound KW - Olea KW - TNF-α KW - virtual docking KW - TGF-β KW - MMP-1 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286150 SN - 2218-1989 VL - 12 IS - 9 ER - TY - JOUR A1 - Eltamany, Enas E. A1 - Abdelmohsen, Usama Ramadan A1 - Hal, Dina M. A1 - Ibrahim, Amany K. A1 - Hassanean, Hashim A. A1 - Abdelhameed, Reda F. A. A1 - Temraz, Tarek A. A1 - Hajjar, Dina A1 - Makki, Arwa A. A1 - Hendawy, Omnia Magdy A1 - AboulMagd, Asmaa M. A1 - Youssif, Khayrya A. A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. T1 - Holospiniferoside: A New Antitumor Cerebroside from The Red Sea Cucumber Holothuria spinifera: In Vitro and In Silico Studies JF - Molecules N2 - Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography–mass spectrometry (GC–MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC\(_{50}\) of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2–p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents. KW - Holothuria spinifera KW - HRMS KW - cerebrosides KW - molecular docking KW - cytotoxicity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234058 SN - 1420-3049 VL - 26 IS - 6 ER - TY - JOUR A1 - Alnusaire, Taghreed S. A1 - Sayed, Ahmed M. A1 - Elmaidomy, Abeer H. A1 - Al-Sanea, Mohammad M. A1 - Albogami, Sarah A1 - Albqmi, Mha A1 - Alowaiesh, Bassam F. A1 - Mostafa, Ehab M. A1 - Musa, Arafa A1 - Youssif, Khayrya A. A1 - Refaat, Hesham A1 - Othman, Eman M. A1 - Dandekar, Thomas A1 - Alaaeldin, Eman A1 - Ghoneim, Mohammed M. A1 - Abdelmohsen, Usama Ramadan T1 - An in vitro and in silico study of the enhanced antiproliferative and pro-oxidant potential of Olea europaea L. cv. Arbosana leaf extract via elastic nanovesicles (spanlastics) JF - Antioxidants N2 - The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC\(_{50}\) values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC\(_{50}\) 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC\(_{50}\) 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential. KW - olive KW - metabolomic profiling KW - antiproliferative KW - pro-oxidant KW - encapsulation KW - spanlastic KW - nanocarrier KW - docking KW - molecular dynamics simulation KW - Olea Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250064 SN - 2076-3921 VL - 10 IS - 12 ER - TY - JOUR A1 - Abdelhameed, Reda F. A. A1 - Habib, Eman S. A1 - Goda, Marwa S. A1 - Fahim, John Refaat A1 - Hassanean, Hashem A. A1 - Eltamany, Enas E. A1 - Ibrahim, Amany K. A1 - AboulMagd, Asmaa M. A1 - Fayez, Shaimaa A1 - Abd El-kader, Adel M. A1 - Al-Warhi, Tarfah A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. A1 - Abdelmohsen, Usama Ramadan T1 - Thalassosterol, a New Cytotoxic Aromatase Inhibitor Ergosterol Derivative from the Red Sea Seagrass Thalassodendron ciliatum JF - Marine Drugs N2 - Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC\(_{50}\) values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides. KW - cytotoxic activity KW - ergosterol derivative KW - metabolic analysis KW - docking studies KW - seagrass KW - Thalassodendron ciliatum Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236085 VL - 18 IS - 7 ER - TY - JOUR A1 - Abdelhameed, Reda F. A. A1 - Habib, Eman S. A1 - Eltahawy, Nermeen A. A1 - Hassanean, Hashim A. A1 - Ibrahim, Amany K. A1 - Mohammed, Anber F. A1 - Fayez, Shaimaa A1 - Hayallah, Alaa M. A1 - Yamada, Koji A1 - Behery, Fathy A. A1 - Al-Sanea, Mohammad M. A1 - Alzarea, Sami I. A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. A1 - Abdelmohsen, Usama Ramadan T1 - New cytotoxic natural products from the Red Sea sponge Stylissa carteri JF - Marine Drugs N2 - Bioactivity-guided isolation supported by LC-HRESIMS metabolic profiling led to the isolation of two new compounds, a ceramide, stylissamide A (1), and a cerebroside, stylissoside A (2), from the methanol extract of the Red Sea sponge Stylissa carteri. Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR and HRMS. The bioactive extract’s metabolomic profiling showed the existence of various secondary metabolites, mainly oleanane-type saponins, phenolic diterpenes, and lupane triterpenes. The in vitro cytotoxic activity of the isolated compounds was tested against two human cancer cell lines, MCF-7 and HepG2. Both compounds, 1 and 2, displayed strong cytotoxicity against the MCF-7 cell line, with IC\(_{50}\) values at 21.1 ± 0.17 µM and 27.5 ± 0.18 µM, respectively. They likewise showed a promising activity against HepG2 with IC\(_{50}\) at 36.8 ± 0.16 µM for 1 and IC\(_{50}\) 30.5 ± 0.23 µM for 2 compared to the standard drug cisplatin. Molecular docking experiments showed that 1 and 2 displayed high affinity to the SET protein and to inhibitor 2 of protein phosphatase 2A (I2PP2A), which could be a possible mechanism for their cytotoxic activity. This paper spreads light on the role of these metabolites in holding fouling organisms away from the outer surface of the sponge, and the potential use of these defensive molecules in the production of novel anticancer agents. KW - LC-HRESIMS KW - Stylissa carteri KW - ceramide KW - cerebroside KW - docking KW - cytotoxic activity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205795 SN - 1660-3397 VL - 18 IS - 5 ER - TY - JOUR A1 - Zahran, Eman Maher A1 - Albohy, Amgad A1 - Khalil, Amira A1 - Ibrahim, Alyaa Hatem A1 - Ahmed, Heba Ali A1 - El-Hossary, Ebaa M. A1 - Bringmann, Gerhard A1 - Abdelmohsen, Usama Ramadan T1 - Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation JF - Marine Drugs N2 - Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented. KW - Scleractinia KW - marine bacteria KW - marine fungi KW - zooxanthellae KW - marine natural products KW - ADME analysis KW - SARS-CoV-2 KW - molecular docking KW - RNA-dependent RNA polymerase KW - methyltransferase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220041 SN - 1660-3397 VL - 18 IS - 12 ER - TY - JOUR A1 - Abdelhameed, Reda F. A. A1 - Eltamany, Enas E. A1 - Hal, Dina M. A1 - Ibrahim, Amany K. A1 - AboulMagd, Asmaa M. A1 - Al-Warhi, Tarfah A1 - Youssif, Khayrya A. A1 - Abd El-kader, Adel M. A1 - Hassanean, Hashim A. A1 - Fayez, Shaimaa A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. A1 - Abdelmohsen, Usama Ramadan T1 - New cytotoxic cerebrosides from the Red Sea cucumber Holothuria spinifera supported by in-silico studies JF - Marine Drugs N2 - Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC\(_{50}\) values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC\(_{50}\) 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents. KW - LC-HRESIMS KW - Holothuria spinifera KW - cerebrosides KW - molecular docking KW - cytotoxicity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211089 SN - 1660-3397 VL - 18 IS - 8 ER - TY - JOUR A1 - El-Hossary, Ebaa M. A1 - Abdel-Halim, Mohammad A1 - Ibrahim, Eslam S. A1 - Pimentel-Elardo, Sheila Marie A1 - Nodwell, Justin R. A1 - Handoussa, Heba A1 - Abdelwahab, Miada F. A1 - Holzgrabe, Ulrike A1 - Abdelmohsen, Usama Ramadan T1 - Natural Products Repertoire of the Red Sea JF - Marine Drugs N2 - Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities. KW - Red Sea KW - marine natural products KW - marine organisms KW - biodiversity KW - marine metagenomics KW - bioactivity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213110 SN - 1660-3397 VL - 18 IS - 9 ER - TY - JOUR A1 - Elmaidomy, Abeer H. A1 - Mohammed, Rabab A1 - Hassan, Hossam M. A1 - Owis, Asmaa I. A1 - Rateb, Mostafa E. A1 - Khanfar, Mohammad A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Abdelmohsen, Usama Ramadan T1 - Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from Premna odorata Blanco JF - Metabolites N2 - Metabolomic profiling of different Premna odorata Blanco (Lamiaceae) organs, bark, wood, young stems, flowers, and fruits dereplicated 20, 20, 10, 20, and 20 compounds, respectively, using LC–HRESIMS. The identified metabolites (1–34) belonged to different chemical classes, including iridoids, flavones, phenyl ethanoids, and lignans. A phytochemical investigation of P. odorata bark afforded one new tetrahydrofurofuran lignan, 4β-hydroxyasarinin 35, along with fourteen known compounds. The structure of the new compound was confirmed using extensive 1D and 2D NMR, and HRESIMS analyses. A cytotoxic investigation of compounds 35–38 against the HL-60, HT-29, and MCF-7 cancer cell lines, using the MTT assay showed that compound 35 had cytotoxic effects against HL-60 and MCF-7 with IC50 values of 2.7 and 4.2 µg/mL, respectively. A pharmacophore map of compounds 35 showed two hydrogen bond acceptor (HBA) aligning the phenoxy oxygen atoms of benzodioxole moieties, two aromatic ring features vectored on the two phenyl rings, one hydrogen bond donor (HBD) feature aligning the central hydroxyl group and thirteen exclusion spheres which limit the boundaries of sterically inaccessible regions of the target’s active site. KW - Premna KW - lignan KW - metabolomic KW - cytotoxic KW - pharmacophore map Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193187 SN - 2218-1989 VL - 9 IS - 10 ER -