TY - THES A1 - Anneser, Katrin T1 - Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung T1 - Electric double layer capacitors for stabilizing intermittent photovoltaic power N2 - Der Ausbau der regenerativen Energiequellen führt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von natürlichen Bedingungen abhängen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vorüberziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher müssen eine hohe Zyklenstabilität aufweisen, um zur Glättung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren für die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zusätzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor. Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu ermöglichen, wurde der konventionell verwendete Flüssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer Säure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein größerer Anteil der spezifischen Fläche der porösen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten ähnliche Kapazitäten erreicht werden wie mit Flüssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgeführt und festgestellt, dass die Kapazität zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt. Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgeführt, die mit einem eigens entwickelten MPP-Messgerät an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen für welche Zeit im Kurzzeitspeicher zwischengespeichert werden müssen, um eine effiziente Glättung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazität berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazitäten verglichen wurde. Neben einem idealen MPP-Tracking für verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung für den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegenüber der MPP-getrackten Solarzelle zu verzeichnen, führen aber zu einer Glättung der Leistung des gekoppelten Systems. Die Simulation konnte für Siliziumsolarzellen mit einem Demonstratorversuch im Labor und für organische Solarzellen unter realen Bedingungen validiert werden. Insgesamt ergibt sich eine vielversprechende Glättung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren. N2 - The increased usage of regenerative energy sources leads to more unpredictable fluctuations in power output, as wind power and photovoltaics depend on natural conditions. Especially short-term fluctuations in the range of seconds to minutes, which occur in solar cells due to the shading by passing clouds, have received little attention so far. Corresponding short-term storage units that can be used to smooth these power fluctuations must have a high cycle stability. In the scope of this thesis the suitability of electrochemical double layer capacitors for coupling with silicon solar cells and organic solar modules was investigated with simulations and measurements. Processing methods and aging of electrochemical double layer capacitors in respect to an integrated system consisting of both components - already discussed in the literature as the so-called photocapacitor - were considered. As the liquid electrolyte was replaced by a polymer gel electrolyte based on polyvinyl alcohol and an acid in order to enable printability of the entire electrochemical double-layer capacitor. An increase of the capacitance to the level of the capacitance for electrodes with liquid electrolytes was achieved by improved processing in which a larger proportion of the specific area of the porous carbon electrodes could be wetted by the electrolyte and thus used for storage. In the application as coupled system the electrochemical double-layer capacitor must withstand the same environmental conditions with regard to temperature and humidity as the solar cell. Extensive aging tests were carried out and it was found that, although the capacitance decreases when the water-containing polymer gel electrolyte dries out, remoistening also regenerates the storage capacitance. A detailed analysis of the power fluctuations, which were measured under real conditions with small organic solar modules using a specially developed MPP measuring device, was carried out to determine the appropriate characteristics of the electrochemical double layer capacitor. Using a mathematically smoothed mean curve, it was determined which amounts of energy have to be stored in the short-term storage device for which time in order to achieve the smoothed curve. From the statistics of the fluctuations a capacitance could be calculated which was used as a guide value in the simulations and could then be compared to the impact of other capacities. In addition to ideal MPP tracking for different types of solar cells and lighting profiles, the simulation was also able to model the coupling of solar cell and electrochemical double layer capacitor with two different operating strategies. On the one hand a fixed load resistance was used, on the other hand a target voltage for the short-term storage device and thus also for the solar cell was specified. The load resistance was variably adapted so that the target voltage was reached. Both operating methods show an energy loss compared to the MPP tracked solar cell without storage component, but lead to smoothing of the power output of the coupled system. The simulation could be validated for silicon solar cells with a demonstrator test in the laboratory and for organic solar cells on the external test setup under real conditions. Overall, the use of electrochemical double layer capacitors results in a promising smoothing of the power fluctuations of solar cells. KW - Energie KW - Photovoltaik KW - Energiespeicher Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199339 ER - TY - THES A1 - Weber, Christian T1 - Electrochemical Energy Storage: Carbon Xerogel-Manganese Oxide Composites as Supercapacitor Electrode Materials T1 - Elektrochemische Energiespeicher: Kohlenstoff Xerogel-Manganoxid Komposite als Elektrodenmaterial für Superkondensatoren N2 - Electrochemical double layer capacitors (EDLC), most commonly referred to as “supercapacitors”, have gained increasing scientific and commercial interest in recent years. Purely electrostatic charge storage processes allow charge- and discharge cycles in the second-time scale, exhibiting a theoretical capacitance in the order of 100 F per gram of electrode material, thereby providing efficient recuperation devices for electromechanical processes, for example. Introducing electrochemically active materials such as manganese oxides into the supercapacitor electrode, allows to combine the double-layer storage with a battery-like storage process, leading to capacitance that can be up to two orders of magnitude larger than those in EDLC. In the present work, an electroless deposition approach of manganese oxide on a carbon scaffold is adapted and further investigated. The carbon material is derived from an organic xerogel, which in turn is prepared via a sol-gel process, allowing tailoring of the structural properties of the carbon, making it an ideal model system to study the relation between morphology and electrochemical performance in the carbon-manganese oxide hybrid electrode. In the first part of this thesis, a variation of manganese oxide deposition time at a low concentration of precursor solution is analyzed. Mass uptakes reach up to 58 wt.%, leading to an increase of volumetric capacitance by a factor 5, however reducing the dynamic performance of the electrode. The structural characterization gives hints on the deposition location of the active material either in the intra-particular pores of the carbon backbone or on the enveloping surface area of the particles forming the backbone. In order to comprehensively answer the question of the location of the active material within the hybrid electrode, the particle size of the carbon backbone and therefore the enveloping surface area of the carbon particles was varied. For samples with high mass uptakes, scanning electron microscopy (SEM) images show a layer thickness of 27 nm of active material around the carbon particles. In order to quantitatively investigate this layer morphology, even for low mass uptakes where no layer is visible in SEM images, a model interpreting data from anomalous small angle X-ray scattering (ASAXS) measurements was developed. The results confirm the presence of a layer around the carbon particles, exhibiting a layer thickness ranging from 3 to 26 nm. From an electrochemical point of view, carbon backbones with a large enveloping surface area will lead to high mass uptakes in the electroless deposition process and therefore lead to high capacitance of the electrode. However, for future application, electrodeposition approaches should be investigated in detail, since no deposits will form on the interface between carbon backbone and current collector, leading to a better dynamic performance of the hybrid electrode. Furthermore, the ASAXS-method should be promoted and applied on other material systems, since this technique allows to draw important conclusions and allows to deduce integral and quantitative information towards a rational design of high performance electrodes. N2 - In den letzten Jahren haben elektrochemische Doppelschichtkondensatoren, meist als “Supercaps” bezeichnet, wachsendes wissenschaftliches und kommerzielles Interesse erfahren. Rein elektrostatische Ladungsspeicherungsprozesse erlauben Lade- und Entladezyklen im Sekundenregime, bei einer theoretischen Kapazität in der Größenordnung von 100 Farad pro Gramm Elektrodenmaterial. Damit steht beispielsweise ein ideales Bauteil zur Energierekuperation in elektromechanischen Prozessen zur Verfügung. Die Verbindung der Doppelschichtelektrode mit elektrochemisch aktiven Materialien, wie zum Beispiel Manganoxiden, erlaubt eine Kombination der elektrostatischen Ladungsspeicherung mit batterieähnlichen Ladungsspeicherungsprozessen. Dies führt zu Kapazitätswerten, die bis zu zwei Größenordnungen über den Kapazitätswerten im Doppelschichtkondensator liegen können. In der vorliegenden Arbeit wurde ein nasschemischer Abscheidungsprozess für die Deposition von Manganoxid auf einem Kohlenstoffgerüst angewendet und weitergehend untersucht. Das Kohlenstoffmaterial wurde aus einem organischem Xerogel hergestellt, welches wiederum durch einen Sol-Gel Prozess dargestellt wurde. Diese Vorgehensweise erlaubt eine gezielte Beeinflussung der strukturellen Eigenschaften des Kohlenstoffes. Dadurch wird das Material zum idealen Modellsystem, um den Einfluss der Morphologie auf die elektrochemischen Eigenschaften der Kohlenstoff-Manganoxid Hybridelektrode zu untersuchen. Im ersten Teil der Arbeit wurde die Abscheidungsdauer des Manganoxids bei einer niedrigen Ausgangskonzentration in der Vorstufe systematisch variiert und die resultierenden Elektroden analysiert. Die MnO2 Massenaufnahme erreichte bis zu 58 wt.%, was zu einer Steigerung der volumetrischen Kapazität um einen Faktor 5 führte. Der Preis für diese Steigerung liegt jedoch in einer Reduktion der Lade- bzw. Entladegeschwindigkeit. Die strukturelle Charakterisierung der Hybridelektroden deutet auf eine Abscheidung des MnO2 in den intrapartikulären Poren der Kohlenstoffpartikel oder auf deren einhüllenden Oberfläche hin. Um den Abscheidungsort des aktiven Materials innerhalb der Hybridelektrode eindeutig zu bestimmen, wurde die Größe der Kohlenstoffpartikel und damit die externe Oberfläche des Kohlenstoffgerüstes systematisch variiert. Aufnahmen mittels Rasterelektronenmikroskopie (REM) zeigen eine Schicht von MnO2 um die Kohlenstoffpartikel mit einer Dicke von bis zu 27 nm für Proben mit Massenzuwächsen von bis zu 130 %. Um die Schichtdicke auch für geringe Massenaufnahmen, bei denen im REM keine Schicht erkennbar ist, quantitativ untersuchen zu können, wurde ein Modell zur Analyse von anomaler Röntgenkleinwinkelstreuung (ASAXS) entwickelt. Die Ergebnisse bestätigen die Existenz einer Schicht um die Kohlenstoffpartikel, deren Dicke zwischen 3 und 26 nm liegt. Aus elektrochemischer Sicht wird ein Kohlenstoffgerüst mit großer einhüllender Oberfläche zu einer großen Massenaufnahme im nasschemischen Abscheidungsprozess und damit zu hohen Kapazitätswerten führen. Für eine zukünftige Anwendung sollten jedoch auch elektrochemische Abscheidungsprozesse genau untersucht werden, da bei dieser Methode kein Material auf der Kontaktfläche zwischen Stromabnehmer und Elektrode abgeschieden wird. Dadurch ist eine Verbesserung der elektrochemischen Performance der Hybridelektrode zu erwarten. Weiterhin sollte die ASAXS-Methode weiterentwickelt und auf andere Materialsysteme angewendet werden, da diese Technik wichtige Schlüsse erlaubt, sowie die Bestimmung integraler und quantitativer Information, die zu gezieltem Design von hocheffizienten Elektroden führen wird. KW - Superkondensator KW - Electrochemical energy storage KW - ASAXS KW - Supercapacitor KW - Energiespeicher KW - Experimental physics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130748 ER -