TY - THES A1 - Wittstadt, Katrin T1 - Tiefenrisskorrosion an historischen Gläsern - Grundlegende Untersuchungen zur Klärung von Schadensursachen und dem Einfluss von Umgebungsbedingungen T1 - A special kind of crack pattern on historic glass - damage description and cause analysis N2 - Archäologische Gläser können verschiedene Korrosionsphänomene aufweisen, die häufig mit der Ausbildung von Brüchen und Mikrorissen einhergehen. Ein besonders schwerwiegendes Korrosionsphänomen an Glasartefakten wird unter Archäologen als „sugaring“ bezeichnet. Die betroffenen Gläser weisen korrosionsbedingt eine ausgesprochen kleinteilige Fragmentierung auf, die im Extremfall an Zuckerkristalle erinnert. Im Rahmen der Dissertation erfolgte eine genaue Schadensbeschreibung und Schadensuntersuchung an geschädigten archäologischen Gläsern und Fensterglas mittels Lichtmikroskopie und Rasterelektronenmikroskopie (REM-EDX). Aufbauend auf den Untersuchungen an Originalgläsern wurden Modellgläser nachgeschmolzen und in Laborversuchen unter verschiedenen Bedingungen künstlich bewittert. Ziel war es mögliche Einflussfaktoren für die Ausbildung des Schadens zu bestimmen – wie den Einfluss von wässrigen Lösungen mit unterschiedlichen pH-Werten, Feuchtigkeitsschwankungen, unterschiedliche Oberflächeneigenschaften des Glases bzw. die Materialstärke. Die Ergebnisse zeigen, dass vor allem das Vorhandensein von Wasser bzw. Feuchtigkeit der dominierende Parameter ist, der die Schadensentwicklung beeinflusst. N2 - Archaeological glass may develop a variety of degradation phenomena, including fractures and micro-fissures. An advanced state of corrosion is known as ‘sugar glass’, which refers to fractures that result in the disintegration of the glass into millimetre size fragments. The shape of the fragments is similar to granulated sugar. In this work, several glass fragments were analyzed by light microscopy and SEM-EDS to get a better understanding of the corrosion phenomenon. More over, this work focuses on investigations into historic glasses and laboratory experiments undertaken in order to determine the main factors influencing this type of deterioration. Two model glasses were exposed to artificial weathering tests to explore the influence of aqueous solutions with different pH values, variations in humidity, as well as the significance of different surface properties and thickness of a glass. The results show that the constant presence of water or moisture is the dominant parameter that influences the development of ‘sugaring’. KW - Glaskorrosion KW - archäologisches Glas KW - Crizzling KW - Zuckerglas KW - Modellglas KW - glass deterioration KW - archaeological glass KW - model glass KW - sugaring KW - fracturing KW - Archäologie KW - Glas KW - Hohlglas KW - Korrosion KW - Schäden Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150502 ER - TY - THES A1 - Somorowsky, Ferdinand T1 - Entwicklung von nanoporösen Gläsern mit kontrollierten Sorptionseigenschaften zur Verbesserung des Innenraumklimas T1 - Development of nanoporous glasses with controlled sorption characteristics to improve the climate of living rooms N2 - Im Rahmen der vorliegenden Arbeit wurde die prinzipielle Eignung von porösen Vycor®-Gläsern als Feuchteregulierungsmaterial für den Einsatz im Baubereich erarbeitet. Im Speziellen wurden die Einflüsse der Herstellungsparameter auf die Glaseigenschaften entwickelt und optimiert. Die porösen Glasflakes wurden in angepasste Putzsysteme implementiert und praxisnahe Untersuchungen der Wirksamkeit durchgeführt. Unterstützt wurden die Ergebnisse durch auf Messwerten basierte Simulationen des Gebäudeklimas, welche auch die Auswirkungen bei verschiedenen klimatischen Bedingungen berücksichtigen. Der verwendete Prozess zur Herstellung der porösen Gläser basiert auf dem 1933 patentierten Vycor®-Verfahren [HOO34][HOO38]. Durch eine Temperaturbehandlung entmischt das homogene Natrium-Borosilicatglas in zwei perkolierende, interpenetrierende Phasen. Diese weisen deutlich unterschiedliche chemische Beständigkeiten auf. Durch Auflösen der instabileren Phase verbleibt ein poröses, fast reines Siliciumdioxidgefüge, dessen Struktur und Eigenschaften durch die Wahl der Prozessparameter eingestellt werden kann. Erstmals konnte gezeigt werden, dass poröse Vycor®-Gläser in der Lage sind, Wasser bei Raumtemperatur reversibel aufzunehmen, im Porensystem zu speichern und wieder abzugeben. Basierend auf dieser unerlässlichen Eigenschaft, konnten die Vycor®-Gläser durch eine Optimierung und ein besseres Verständnis der Herstellungsparameter hin zu einem Material mit wirklichen Feuchteregulierungseigenschaften qualifiziert werden. Im ersten Teil der vorliegenden Arbeit (Kapitel 4.1 und 4.2) wurde der Einfluss der strukturbestimmenden Parameter Glaszusammensetzung, Partikelgröße bzw. -form und Entmischungsbedingungen auf das Sorptionsverhalten von Wasser dargestellt. Um die Wasseraufnahme und -abgabe sowie das Zusammenspiel (Zyklisierbarkeit) bei unterschiedlichen Luftfeuchtigkeiten zu untersuchen, wurde in einem Klimaschrank ein realitätsnahes Feuchte- und Temperaturprofil generiert. Hiermit konnte die Zyklisierbarkeit der porösen Gläser in Abhängigkeit der Glaseigenschaften beobachtet werden. Ergänzt wurde die Charakterisierung durch Stickstoffsorptionsuntersuchungen und REM-Aufnahmen. Bei der Glaszusammensetzung wurde der Einfluss des Siliciumdioxid-Anteils und des Boroxid zu Natriumoxid Verhältnisses auf das finale poröse Glas betrachtet. Es zeigte sich, dass Gläser mit einem geringeren SiO2 Anteil zu Gläsern mit einer höheren Porosität, einer höheren spezifischen Oberfläche und als Folge daraus zu einer besseren Zyklisierbarkeit führen. Die praktische Einsatzfähigkeit wird allerdings von einer ungenügenden mechanischen Beständigkeit von Gläsern mit Siliciumdioxidgehalten unterhalb von 50 MA% begrenzt. Das B2O3/Na2O-Verhältnis wirkt sich vor allem auf den Grad des Entmischungsverlaufs und damit auf die sich bildende interpenetrierende Struktur aus. Erkennbar ist dies an der zum Boroxidanteil indirekt proportionalen Transformationstemperatur. Dies zeigt sich ebenfalls bei den Zyklisierungsversuchen, bei denen sich die Wasseraufnahme bzw. -abgabe bei gegebener Temperatur und unterschiedlichem B2O3/Na2O-Verhältnis deutlich unterscheidet. Anhand der entsprechenden Stickstoffsorptionsuntersuchungen konnte gezeigt werden, dass das Reaktionsvermögen eines porösen Glases auf einen Temperatur- und Feuchtezyklus, ein Zusammenspiel aus passendem Porendurchmesser und hoher spezifischer Oberfläche ist. Einen besonderen Aspekt der vorliegenden Arbeit stellt die Untersuchung von Glasflakes, flache Plättchen mit Dicken von einigen µm und Durchmessern von bis zu 1000 µm, dar. Diese können z. B. mittels eines Rotationsflakers hergestellt werden. Es konnte gezeigt werden, dass die mit den Flakes versehenen Wandanstriche nicht nur bessere Verarbeitungseigenschaften aufweisen, sondern auch im Vergleich zu annähernd isotropen Partikeln signifikant verbesserte Sorptionseigenschaften besitzen. Die Ausbildung der Porengröße und damit der spezifischen Oberfläche verläuft hauptsächlich über den einstellbaren thermischen Entmischungsvorgang. Um die optimalen Parameter für die Feuchtigkeitsaufnahme und -abgabe zu finden, wurde in dieser Arbeit neben der Plateautemperatur auch die Entmischungsdauer variiert. Oberhalb von ca. 520 °C ist die charakteristische Phasenseparation energetisch begünstigt. Diese verstärkt sich mit steigender Temperatur, wodurch größere Entmischungsbezirke entstehen. Oberhalb von ca. 650 °C kommt es zum Zusammensintern der Glasflakes, sodass deren ursprüngliche Geometrie zerstört wird. Für Untersuchungen oberhalb dieser Temperaturen muss also das Rohglas entmischt und erst im nachfolgenden Prozess zu Pulver aufgemahlen werden. Glasflakes sind durch diesen Verarbeitungsprozess jedoch nicht mehr herstellbar. Ein entscheidendes neues Ergebnis dieser Arbeit ist, dass die Porengröße innerhalb dieses Temperaturbereiches durch Anpassung der Entmischungstemperatur annähernd nanometer-genau eingestellt werden kann. Dies zeigt auch den großen Vorteil poröser Vycor®-Gläser im Vergleich zu anderen porösen Materialien. Für die Feuchteregulierung erwies sich ein Porendurchmesser von 3,8 nm, welcher durch eine Entmischungstemperatur von 533 °C generiert wird, als optimal. Die Dauer der Entmischung hat vor allem einen Einfluss auf den Fortschritt des Porenwachstums, nicht jedoch auf die Porengröße selbst. Nach ca. 30 Minuten kann das Entstehen der Poren erstmals eindeutig nachgewiesen werden. Der Entmischungsprozess ist nach ca. 24 Stunden abgeschlossen. Eine Verlängerung der Entmischungszeit hat keine weitere Veränderung der Porenstruktur zur Folge. In Kombination mit den Ergebnissen der Untersuchungen zum Einfluss des B2O3/Na2O-Verhältnisses konnte gezeigt werden, dass durch die Wahl der passenden Entmischungstemperatur die gewünschte Porengröße, in weiten Bereichen unabhängig vom B2O3/Na2O-Verhältnis, gezielt eingestellt werden kann. Im zweiten Teil der Arbeit wurde die Auslaugung hinsichtlich technischer Funktionalität und Umweltfreundlichkeit optimiert. Hierbei konnte gezeigt werden, dass neben Schwefelsäure auch Salzsäure zur vollständigen Auslaugung verwendet werden kann. Salzsäure kann im Gegensatz zu Schwefelsäure deutlich einfacher wieder aufgearbeitet werden (geringere Temperatur und Druck im Falle einer destillativen Aufarbeitung), was für die wirtschaftliche Anwendung von hoher Bedeutung ist. Weiterhin wurde die Konzentration der Säure verringert. Hierbei konnten bis zu einer Verdünnung auf 0,75 molare Salzsäure noch poröse Gläser mit vergleichbaren Zyklisierungswerten erhalten werden. Erst bei weiterer Verdünnung wurden die entmischten Glasflakes unvollständig ausgelaugt. Ein weiterer Einfluss der verwendeten Säureart oder der Konzentration auf die Porenstruktur bzw. die Porengröße konnte nicht gefunden werden. Wie in der Literatur beschrieben, wurde die Auslaugung der entmischten Gläser zunächst bei hohen Temperaturen oberhalb von 95 °C durchgeführt, sodass dieser Teilschritt viel Energie verbraucht [JAS01]. Um den Prozess ressourcenschonender aufzustellen, wurde im Kapitel 4.3 untersucht, welche Temperatur zwingend benötigt wird. Hierbei wurden die Temperatur und die Säurekonzentration variiert. Diese Parameter verändern den Anteil der Poren, jedoch nicht die Porengröße. Durch eine geringere Temperatur und geringere Säurekonzentrationen nimmt die Porosität ab. Eine Verlängerung der Auslaugedauer auf drei Stunden verbessert den Grad der Auslaugung erheblich. Da die Auslaugung bei 0,40 molarer Salzsäure nicht vollständig verläuft, wurde bei dieser Konzentration die Auslaugedauer nochmals einzeln betrachtet. Hierbei bestätigte sich, dass eine längere Auslaugung den Anteil der in der Entmischung eingestellten Poren vergrößert und auch die Zyklisierbarkeit (Massenhub) zunimmt. Die Werte von den mit 1,5 molarer Salzsäure ausgelaugten Gläsern können, trotz einer Dauer von bis zu acht Stunden, jedoch nicht erreicht werden. Eine alternative Möglichkeit um die Auslaugung ressourcenschonender zu gestalten, wurde mit dem neuen Ansatz die Synthese unter hydrothermischen Bedingungen durchzuführen, entwickelt. Hierbei wurden die entmischten Gläser entweder mit verdünnter Säure (0,75 mol/l HCl) oder mit Wasser in einem Autoklaven bei Temperaturen von 100 °C bis 200 °C, einem Reaktionsdruck von bis zu 30 bar und für bis zu 20 Stunden behandelt. Im Fall der Salzsäure verursachen alle drei Parameter eine Veränderung der Porenstruktur. In der Porengrößenbetrachtung mittels Stickstoffsorption erkennt man einen zweiten Peak bei größerem Durchmesser, wobei der ursprüngliche Peak abnimmt. Dies deutet auf ein Auflösen der ursprünglichen Porenwände hin. Die Zunahme des Porenvolumens und die Abnahme der spezifischen Oberfläche bestätigt diese Annahme. Da die resultierende Porenstruktur und die spezifische Oberfläche stark verändert werden, ist diese hydrothermale Methode zur Fertigung von Glasflakes für die Anwendung als Feuchtespeichermaterial nicht geeignet. Für andere Anwendungsfelder (siehe Seite 85) könnte diese Möglichkeit dennoch sehr interessant sein, da so leicht ein bimodales Porensystem hergestellt werden kann. Das Kapitel „Variation der Auslaugebedingungen“ wird mit Untersuchungen zur Wiederverwertbarkeit von Auslaugemedium und Borsäure abgeschlossen. Hierzu wird die gelöste Borsäure aus dem Auslaugemedium bei Raumtemperatur ausgefällt. Eine anschließende destillative Aufreinigung kann zu einem nahezu vollständigen Recycling, sowohl des Auslaugemediums als auch der Borsäure, führen. Neben dem Einfluss der Glasherstellung und der Herstellungsparameter auf die Wasserauf- und -abgabefähigkeit der porösen Gläser, wurden auch die Parameter der Klimaprofile (Raumtemperaturschwankungen, Änderung der Feuchtigkeit) genauer betrachtet. Die Sorption hängt stark von der Temperatur ab. Die Wasserabgabe wird durch eine höhere Temperatur (50 °C) erhöht und beschleunigt. Dieser Effekt zeigt sich auch bei der Zyklisierung. Der Massenhub beträgt bei 50 °C 12,1 MA%, bei 20 °C nur noch 3,3 MA% bei identischem Feuchte- und Zeitprofil. Die Kinetik der Wasseraufnahme und -abgabe wurde anhand von Klimaprofilen mit unterschiedlichen Änderungsraten untersucht. Hierbei fand die Feuchteänderung von 30 % auf 90 % innerhalb von einer Stunde, zwei Stunden und vier Stunden statt. Untersucht wurden die für den Einsatz als Feuchteregulierungsmaterial optimierten Glasflakes sowie Flakes mit größeren und kleineren Porendurchmessern. Bei allen Proben findet die Aufnahme deutlich schneller statt als die Desorption. Ein Grund hierfür ist der Flaschenhalsporeneffekt (siehe Seite 37). Des Weiteren ist bei den optimierten Glasflakes die Steigung der Massenänderung, unabhängig von der Feuchteänderungsrate, immer am größten. Diese Gläser sprechen also am direktesten auf Änderungen der Luftfeuchtigkeit an und es bestätigt sich, dass die Einstellung der richtigen Porengröße entscheidend ist. Dies konnte im Rahmen der vorliegenden Arbeit realisiert werden. Darüber hinaus ermöglichen die Ergebnisse der Experimente zur Sorptionskinetik einen umfassenderen Blick auf die Sorption und dabei insbesondere auf die Poreneigenschaften und auf die Sorptionsvorgeschichte. Ebenfalls wurde die Alterung der Sorptionsfähigkeit untersucht. Bei bis zu 20 Wiederholungszyklen konnte kein negativer Effekt beobachtet werden. Die Wasseraufnahme und -abgabe hat neben dem feuchtigkeitsregulierenden auch eine energetische Auswirkung auf den Energiehaushalt in einem Gebäude. Da bei jeder Sorption Energie verbraucht bzw. frei wird, kann ein wärmeregulierender Effekt auftreten. Um diesen Effekt genauer zu quantifizieren, wurde die Desorption von konditionierten Gläsern mittels Differenzkalorimetrie untersucht. Der Energiebetrag kann sowohl bei den Glasflakes als auch bei den mit Flakes versetzten Putzen detektiert werden und korreliert mit der gespeicherten Wassermenge. Auch wenn die Einzelenergiemenge pro Vorgang sehr gering ist, so summiert sich diese bei den vielen Vorgängen über das Jahr hinweg zu einem erheblichen Gesamtenergiebetrag (ca. 6 % des Energieverbrauchs in einem Wohnhaus), welcher eine interessante Ergänzung zur Feuchtigkeitsregulierung darstellen kann. Mit den für die Wasserauf- und -abgabe optimierten porösen Gläsern wurden Wandanstriche (Putze und Farben) hergestellt (siehe Seite 112) und diese auf ihre Eignung als Feuchteregulierungsmaterial untersucht. Im Vergleich mit den Standardputzen haben die Klimaputze mit dem Zusatz von Glasflakes aktuell noch geringere mechanische Kennwerte, insbesondere Druckfestigkeit und Dynamisches E-Modul. Dies ist vor allem auf das lockere Gefüge durch die Beimischung der Glasflakes zurückzuführen. Die Beimengung führt umgekehrt aber zu einer Steigerung der Porosität und der spezifischen Oberfläche. REM-Aufnahmen belegen dies. Durch Optimierung der Putzzusammensetzung gibt es jedoch eine gute Chance, die mechanischen Eigenschaften der Klimaputze noch zu verbessern. Um den Feuchteregulierungseffekt besser einschätzen zu können, wurde in Zyklisierungsversuchen der Vycor®-Putz mit kommerziellen Putzen mit und ohne zusätzliche Regulierungsfunktionalität und anderen Feuchteregulierungsmaterialien, wie Zeolithen und Holzfaserplatten, verglichen. Dabei zeigte der Putz mit den optimierten Glasflakes eine deutlich höhere Wasseraufnahmekapazität, ein direkteres Ansprechverhalten auf Feuchtigkeitsschwankungen und einen sehr viel höheren Massenhub. Erkennbar wird dies vor allem beim realitätsnahen Vergleich von zwei Wandstücken. Hierfür wurden Trägerplatten als Basis sowohl mit einem Standardputz als auch mit dem Vycor®-Klimaputz aufgebaut. Das Vycor®-Wandsystem konnte den Feuchtigkeitssprung im Klimaschrank von 72 % r. L. auf 40 % r. L. vollständig abpuffern. Der Massenhub betrug mit ca. 13 g Wasser pro m2 Wandfläche sogar das Dreifache der eigentlich zu bindenden Wassermenge. In Zusammenarbeit mit der Universität Bayreuth konnten die im Labor gewonnen Ergebnisse mittels Simulationsberechnungen untermauert werden. Mit dem Software-Tool WUFI (Wärme und Feuchte instationär) konnte sowohl eine Regulierung der jahreszeitlichen Feuchteschwankungen als auch ein positiver Effekt auf das Wohlbefinden der Bewohner gezeigt werden. Durch die Simulationen, deren Eingangswerte auf realen Messwerten basieren, konnte nachgewiesen werden, dass sowohl poröse Gläser als auch die mit porösen Glasflakes versetzen Baustoffe einen deutlich messbaren positiven Effekt auf das Raumklima haben. Der direkte Nachweis, also ein positiver Effekt des porösen Glases auf das Raumklima, wurde bisher nur in Simulationen modelliert und ist unter realen Versuchsbedingungen noch zu prüfen. Hierzu müsste ein Testraum aufgebaut und über längere Zeit vermessen werden. Im Rahmen dieser Arbeit wurde an Hand der voran beschriebenen Ergebnisse das poröse Glassystem der Vycor®-Gläser hinsichtlich seiner kontrollierten Sorptionseigenschaften für eine Anwendung als Feuchteregulierungsmaterial entwickelt. Im Zuge dessen wurde ein besseres Verständnis für die Abläufe und Mechanismen der auftretenden spinodalen Entmischung erarbeitet. Weiterhin konnten die Zusammenhänge zwischen den Poreneigenschaften und der Sorption von Wasser tiefgehender verstanden werden, sodass wichtige Erkenntnisse gewonnen werden konnten, um poröses Vycor®-Glas als Modellsystem für Entmischung und Sorption weiter zu etablieren. N2 - In the present work, the principles of the application of porous Vycor®-glass as a humidity regulation material for civil engineering applications were investigated. First, the influences of production process parameters on the glass properties were developed and optimized. Then, the adapted porous glass flakes were implemented in customized plaster systems. These plasters were characterized in application-oriented studies. The results were supported by simulations of the indoor climate, based on measured data. Within these simulations the impact of different climatic conditions were regarded. The production process of the porous glasses is based on the 1933 patented Vycor®-method [HOO34][HOO38]. The homogeneous alkali borosilicate glass separates into two percolating phases by a heat treatment, one phase is almost pure SiO2 glass, and the other an almost pure sodium borate glass. The two phases have a different chemical resistance towards acids and after dissolving the unstable sodium-borate phase, an almost pure silicon dioxide framework remains. The structure and the properties of this porous SiO2-structure depend significantly on the process parameters. In the first part of this thesis (Chapter 4.1 and 4.2), the influence of structural determining parameters (the glass composition, the particle size and particle shape and the conditions of the phase separation) on the water sorption properties were investigated. To determine the water absorption and release, as well as the interaction (cyclisation) at different relative humidities, a realistic humidity and temperature profile was generated in a climate chamber. Hereby, the cyclisation of the porous glasses could be correlated with the glass properties. These investigations were complemented by nitrogen sorption measurements and SEM investigations. To further consider the influence of the glass composition on the porous glass, the silica content and the ratio of boron oxide to sodium oxide were varied. It was found that a lower SiO2 content causes a higher porosity, a higher specific surface area and, hence, a better cyclisation behavior of the final product. But this effect is limited by the mechanical durability of the glass which is only stable up to 50 MA%. The ratio of B2O3/Na2O especially affects the degree of the phase separation at a given temperature. This can be already perceived by the transformation temperature, which decreases with increasing boron content in the glass. This was also confirmed by the water sorption experiments: The water uptake and release at a given temperature differs significantly with different B2O3/Na2O ratios in the initial glass. Regarding the corresponding nitrogen sorption measurements, it was shown that a high sorption capacity towards a temperature and humidity cycle is triggered by a combination of suitable pore diameter and high specific surface. A very important and also new aspect of this thesis is the investigation of glass flakes, with a thickness of a few μm and diameters of up to 1000 μm. These flitters can be produced by means of a rotary flaker. The wall paints made with these glass flakes show a better handling than with isotropic particles, additional these wall paints also have significantly improved sorption properties in comparison to similar glass powders with an isotropic particle size. The formation of the pores and hence the specific surface area of the porous SiO2-network is mainly determined by the adjustable thermal phase separation process. In order to find the optimum parameters to guarantee high water absorption and release capacity, the plateau temperatures as well as the time of this heat treatment were varied. Above 520 °C, the formation of the characteristic phase separation is entropically favored. With increasing temperature the kinetics of the demixing is accelerated and the size of the phase separated domains increase. Above approximately 650 °C the glass flakes sinter and thus their original geometry is destroyed. To investigate the influence of higher temperatures, the raw glass must be phase separated and grinded to powder in a subsequent process step. However, only spherical particles can be produced this way, but no particles in a flake shape. A new and also a key result of this work is, that the pore size, within the range of 2 to 35 nm, can be adjusted with a reproducibility less than one nanometer by adjusting the separation temperature precisely. This tunability is a great advantage of the porous Vycor®-glass in comparison to other porous materials. To regulate the humidity very effective, a pore diameter of 3.8 nm, which is generated by a phase separation temperature of 533 °C, was proved to be the best. The duration of the separation process has mainly an impact on the progress of the pore growth, but less on the pore size itself. After about 30 minutes phase separation time, the formation of pores can be detected. This process is completed after 24 hours. Any additional extension of the phase separation time has no further impact on the pore structure of the phase separated glass. In combination with the results of studies on the influence of the B2O3/Na2O ratio it was shown that any desired pore size can be adjusted in a wide range by selection of the phase separation temperature almost independent of the B2O3/Na2O ratio. In the second part of this work, the leaching step was optimized with regard to technical applicability and environmental friendliness. It was shown that the acid needed to dissolve the sodium borate glass could be changed from sulfuric acid to hydrochloric acid without any loss in function. Hydrochloric acid can be much better recycled, e. g. by a distillation process, than sulfuric acid. Furthermore, the concentration of the acid was reduced in comparison to the standard procedure. Above a dilution of 0.75 molar hydrochloric acid, comparable cyclisation properties could be obtained for the porous glasses. Only when the acid is further diluted, the separated glass flakes were leached out incomplete. In addition no effect on the pore structure and the pore size of the type of acid or the concentration was found. As described in the literature, the leaching of separated glasses is performed at high temperatures (usually more than 95 °C). Obviously, this process step consumes a lot of energy [JAS01]. In order to reduce the energy consumption, the leaching was examined as a function of the temperature in Chapter 4.3. Besides the temperature, also the concentrations of the acids investigated here were reduced to significant lower values. The variation of these parameters does not change the pore size, but the number of pores: Applying a lower temperature and lower acid concentration, the porosity decreases. An extension of the leaching time up to 3 hours improves the degree of leaching. Since the leaching with 0.40 molar HCl is far from complete, the influence of the time of leaching was investigated at this concentration. It can be confirmed that a longer leaching time increases the fraction of pores, generated in the phase separation, and subsequently the cyclisation properties of the final material were ameliorate. However, the values obtained from the porous glasses leached with 1.5 molar HCl cannot be achieved, even after 8 hours of leaching. An alternative route for a more resource-efficient leaching process can be the new concept of a leaching under hydrothermal conditions. In order to investigate this process, the glasses were separated and treated with a dilute acid (0.75 mol/l HCl), as well as with pure water in an autoclave at temperatures of 100 °C to 200 °C, a reaction pressure of up to 30 bar and for up to 20 hours. In the case of hydrochloric acid, all three parameters cause a change of the pore structure. In the pore size distribution as obtained from the nitrogen sorption measurements, a second peak occurs at larger diameters, while the height of the initial peak decreases. This indicates a considerable dissolution of the original pore walls. The increase of the pore volume and the decrease of the specific surface area confirm this assumption. Because of the extreme change of the resulting pore structure, this method is not suitable for the preparation of porous glass for the moisture regulation. Nevertheless, due to the bimodal pore system, porous glass obtained by a leaching under hydrothermal conditions can be of interest for other applications. Chapter 4.3 is completed with an examination of the recyclability of leaching medium and boric acid, the latter being the most precious medium in the process. For this purpose, the dissolved boric acid is precipitated from the leaching medium at room temperature. A subsequent purification by atmospheric distillation completes the recycling of the leaching medium as well as the boric acid. Besides the impact of the glass production process and the production parameters on the water uptake and release, the dynamics of the moisture uptake and releases under conditions relevant for building applications were investigated. The sorption is strongly influenced by the temperature. The release of water is similarly accelerated and increased by a higher operation temperature (50 °C). This effect can also be observed by an increased cyclisation. The difference between the mass maximum and the mass minimum with an identical humidity and time profile is 12.1 MA% at 50 °C and only 3.3 MA% at 20 °C. The kinetics of the water uptake and release was investigated in experiments, where the humidity changes (from 30 % to 90 %) were performed within 1 hour, 2 hours and 4 hours. For this study, glass flakes with optimized pore size (3.8 nm), as well as flakes with larger and smaller pores were investigated. All samples show a significantly faster water adsorption than desorption. One reason for this observation is the “bottleneck pore effect” (see page 37). Furthermore, the slope of the mass change of the optimized glass flakes is always larger irrespective of the moisture gradient. This confirms that the proper pore size is very decisive for the cyclisation dynamics and could be realized in this thesis. Moreover these results provide the possibility to a more comprehensive picture of the sorption, in particular not only as a function of the pore properties, but also on the sorption history. Besides the moisture-regulation, the sorption of water also causes an energetic effect in a living room. The adsorption consumes energy, while the desorption release energy and so an additional heat-regulating effect may occur. In order to quantify this effect, the desorption of conditioned glasses were examined with DSC. These experiments were performed for the pure glass flakes, as well as for the finery system containing these flakes. The results were correlated with the amount of water, which can be stored in the porous system. Although the amount of energy per single sorption step is very low, due to the large number of cyclisations during a year, the total amount of energy can be about 6 % of the energy consumption of a dwelling. So the energy effect is an interesting surplus to the moisture regulation of porous glasses, in particular since it is a “passive” effect. Using porous glasses optimized for the moisture regulation, wall coatings were prepared (see page 112). The whole system was investigated for its suitability as a moisture regulating material. Currently, the plasters with the glass flakes have still a lower mechanical performance in comparison with the standard plasters, especially the compressive strength and the dynamic Youngs-modulus (3268 N/mm² to 1099 N/mm2) are significantly decreased. This is mainly due to the loose structure, resulting from the addition of the glass flakes. On the other hand, this incorporation also leads to an increase in the porosity. Nevertheless, there is a good chance to improve the mechanical properties by optimizing the finery composition. To classify the moisture regulating performance of the Vycor®-finery, benchmark tests were performed where the materials was incorporated into commercial plasters (with and without regulatory functions), zeolite and fiberboard wall plates were selected. These very different materials were compared in cyclisation tests. Here the plaster with the optimized glass flakes show a significantly higher water adsorption capacity, a quicker response to humidity changes and much higher dynamics of water uptake and release in comparison to the other materials. This was verified practically by investigating two wall pieces constructed by using the Vycor®-glass containing concrete. Samples with classical finery and Vycor®-finery were applied on a support plate and exposed to a climate profile. Hereby the Vycor®-wall system was able to adsorb the water amount completely, originating mitted from a humidity change of 72 % r. h. to 40 % r. h. With about 13 g of absorbed water per m2 wall, the water regulation capacity of the wall system was even three times higher than necessary for a typical residential building. In cooperation with the University of Bayreuth, the obtained experimental results were supported by simulation experiments. The commercial tool WUFI (Wärme und Feuchte instationär) confirms a significant equilibration of seasonal humidity fluctuations, even for buildings in different climatic regions, for buildings where the walls were setup by plasters containing the porous glass. In addition, due to the more balanced humidity, there is also a positive effect on the wellbeing of the residents. The simulations, based on real measured data, demonstrated that not only the porous glass flakes itself, but also the finery with the porous glass additives have a significant effect on the indoor climate. This effect, a positive effect of the porous glass on the indoor climate has been modeled in simulations and must be examined in a real experimental setup e.g. by investigating a model room or building. In this work, the porous glass system obtained by thermal separation of the Vycor®-glasses was optimized with regard to its controlled sorption properties for the application as a moisture control material. In this course, a better understanding of the underlying processes and mechanisms of the spinodal separation was developed. In addition, the interaction between pore properties and the sorption of water could be understood more in detail, so that important findings could be gained in order to establish porous Vycor®-glass as a model system for phase separation and sorption. KW - Glas KW - Poröse Medien KW - Raumklima KW - Raumklima KW - Poröser Stoff Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148100 ER - TY - THES A1 - Dürig, Tobias T1 - Fracture dynamics in silicate glasses T1 - Bruchdynamiken in Silikatgläsern N2 - Understanding the mechanisms of fragmentation within silicate melts is of great interest not only for material science, but also for volcanology, particularly regarding molten fuel coolant-interactions (MFCIs). Therefore edge-on hammer impact experiments (HIEs) have been carried out in order to analyze the fracture dynamics in well defined targets by applying a Cranz-Schardin highspeed camera technique. This thesis presents the corresponding results and provides a thorough insight into the dynamics of fragmentation, particularly focussing on the processes of energy dissipation. In HIEs two main classes of cracks can be identified, characterized by completely different fracture mechanisms: Shock wave induced “damage cracks” and “normal cracks”, which are exclusively caused by shear-stresses. This dual fracture situation is taken into account by introducing a new concept, according to which the crack class-specific fracture energies are linearly correlated with the corresponding fracture areas. The respective proportionality constants - denoted “fracture surface energy densities” (FSEDs) - have been quantified for all studied targets under various constraints. By analyzing the corresponding high speed image sequences and introducing useful dynamic parameters it has been possible to specify and describe in detail the evolution of fractures and, moreover, to quantify the energy dissipation rates during the fragmentation. Additionally, comprehensive multivariate statistical analyses have been carried out which have revealed general dependencies of all relevant fracture parameters as well as characteristics of the resulting particles. As a result, an important principle of fracture dynamics has been found, referred to as the “local anisotropy effect”: According to this principle, the fracture dynamics in a material is significantly affected by the location of directed stresses. High local stress gradients cause a more stable crack propagation and consequently a reduction of the energy dissipation rates. As a final step, this thesis focusses on the volcanological conclusions which can be drawn on the basis of the presented HIE results. Therefore fragments stemming from HIEs have been compared with natural and experimental volcanic ash particles of basaltic Grimsvötn and rhyolitic Tepexitl melts. The results of these comparative particle analyses substantiate HIEs to be a very suitable method for reproducing the MFCI loading conditions in silicate melts and prove the FSED concept to be a model which is well transferable to volcanic fragmentation processes. N2 - Forschungen mit dem Ziel die Abhängigkeiten und Mechanismen von Bruchprozessen in amorphen silikatischen Materialien exakt verstehen zu lernen, sind nicht nur in den Materialwissenschaften, sondern darüber hinaus auch in der Vulkanologie von größter Bedeutung, vor allem auch im Hinblick auf thermohydraulische Schmelze-Wasser-Wechselwirkungen (sog. "molten fuel coolant-interactions", MFCIs). Aus diesem Grund wurden Hammerschlagexperimente (HIEs) durchgeführt, um unter Verwendung einer Cranz-Schardin Funkenzeitlupe die Bruchdynamiken in exakt definierten Versuchsmaterialien zu analysieren. Die vorliegende Arbeit stellt die Ergebnisse dieser Versuchsreihen vor und beleuchtet detailliert die zeitlichen Abläufe während der Fragmentation, wobei sie ihr Hauptaugenmerk besonders auf die energetischen Dissipationsprozesse beim Rissfortschritt richtet. In den HIEs können zwei Hauptklassen von Rissen identifiziert werden, welche durch vollkommen unterschiedliche Rissmechanismen gekennzeichnet sind: Stoßwelleninduzierte "Schadensrisse" ("damage cracks") und "Normalrisse" ("normal cracks"), welche ihre Ursachen ausschließlich in Scherspannungen haben. Diesem parallelen Vorhandensein beider Rissklassen wurde mit einem neu entwickelten Konzept Rechnung getragen: Ihm zufolge sind die rissklassenspezifischen Bruchenergien direkt proportional zur jeweiligen Bruchfläche, wobei die entsprechenden Proportionalitätskonstanten als Bruchflächenenergiedichten ("fracture surface energy densities", FSEDs) bezeichnet werden. Ihre Werte wurden für alle untersuchten Targets unter verschiedenen, genau definierten Randbedingungen ermittelt. Die Auswertungen der Zeitlupenaufnahmen und die Einführung neuer bruchdynamischer Parameter ermöglichten nicht nur eine detaillierte Beschreibung der Rissentwicklung im Target, sondern darüber hinaus auch quantitative Aussagen zur Dynamik der Bruchenergiedissipationsraten. Mit Hilfe umfassender multivariater statistischer Analysen war es zudem möglich, die allgemeinen Abhängigkeiten aller relevanten Bruchparameter sowie die Einflüsse auf die kennzeichnenden Merkmale der bei der Fragmentation erzeugten Partikel herauszufinden. Auf diese Weise konnte ein wichtiges Prinzip der Bruchdynamik nachgewiesen werden, das in dieser Arbeit als "lokaler Anisotropieeffekt" (“local anisotropy effect”) bezeichnet wird. Diesem Prinzip zufolge wird die Bruchdynamik in einem Material signifikant durch die Lage von gerichteten Spannungen beeinflusst: Hohe örtliche Spannungsgradienten senkrecht zur Bewegungsrichtung des Risses bewirken eine stabilere Rissausbreitung und damit eine Verringerung der Energiedissipationsraten. In einem letzten Schritt beschäftigt sich die vorliegende Arbeit mit der Frage, welche vulkanologischen Schlussfolgerungen man aus den vorgestellten Versuchsergebnissen ziehen kann. Dazu wurden die erzeugten HIE-Fragmente mit natürlichen und experimentellen vulkanischen Aschen verglichen, welche von rhyolitischen Tepexitl- und basaltischen Grimsvötn-Schmelzen entstammten. Auf Grundlage dieser Partikelvergleiche konnte gezeigt werden, dass die Hammerschlagsversuche eine geeignete Methode darstellen, um genau jene Belastungsbedingungen zu reproduzieren, welchen Magmen während eines MFCI ausgesetzt sind. Zudem wurde damit der Nachweis erbracht, dass das in dieser Arbeit vorgestellte FSED-Konzept sich adäquat auf vulkanische Fragmentationsprozesse übertragen lässt. KW - Bruchmechanik KW - Vulkanologie KW - Sprödbruch KW - Rissbildung KW - Rissverlauf KW - Bruchfläche KW - Glas KW - Stoßwelle KW - Fragmentation KW - Fragmentationsenergie KW - Hochgeschwindigkeitskinematographie KW - explosiver Vulkanismus KW - Impaktversuche KW - fragmentation KW - fragmentation energy KW - high-speed photography KW - explosive volcanism KW - impact experiments Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73492 ER - TY - THES A1 - Meier, Martin T1 - Mikrostrukturierte Metallschichten auf Glas T1 - Micro-Structured Metal Layers On Glass Substrate N2 - Moderne Wärmeschutzverglasungen erreichen ihren niedrigen Wärmedurchgangskoeffizienten, den U-Wert, im Wesentlichen durch Low-e-Beschichtungen, also Schichten mit einem Emissionsgrad von unter 0.05 im infraroten Spektralbereich. Verantwortlich für die Low-e-Eigenschaften sind bei diesen Beschichtungen häufig eine oder zwei dünne Silberschichten. Im Schichtsystem kommen dazu etliche Schichten zur Entspiegelung, als Diffusionsblocker und zur Haftvermittlung. Sichtbare Strahlung wird durch diese Beschichtungen nur wenig beeinflusst. Wegen des niedrigen Emissionsgrades im IR-Bereich wird jedoch Strahlung im nahen Infrarot reflektiert und damit die solare Transmission vermindert. In vielen Einsatzgebieten, so auch bei der Wärmeschutzverglasung oder bei thermischen Solarkollektoren, kommt es allerdings auf den solaren und nicht auf den visuellen Transmissionsgrad an. Eine ideale „solare Beschichtung“ sollte die solare Einstrahlung weitgehend durchlassen, im Bereich der Wärmestrahlung bei Raumtemperatur dagegen reflektierend wirken. Im Unterschied zu einer solchen Beschichtung verringert eine konventionelle Low-e-Beschichtung den solaren Transmissionsgrad einer Glasscheibe um etwa 20 bis 25 Prozentpunkte. Um diese Verminderung des solaren Transmissionsgrades bei gleichen Isolationseigenschaften zu vermeiden, ist eine stärkere Wellenlängenselektivität der Beschichtung vonnöten. Eine Möglichkeit zur Erhöhung der Wellenlängenselektivität ist Mikrostrukturierung. An Stelle einer durchgehenden Metallschicht wird im Low-e-Schichtsystem ein Metallgitter verwendet. Ist die Wellenlänge der einfallenden Strahlung groß gegenüber dem Abstand der Gitterstreben (im Falle der Wärmestrahlung bei 300 K), verhält sich die Beschichtung wie das flächige Material und damit wie eine konventionelle Low-e-Schicht. Für Licht aus dem Spektrum der Sonnenstrahlung hingegen ist die Wellenlänge kleiner als der Abstand der Gitterstreben, so dass die Transmission hier nur sehr geringfügig vermindert wird. Zur genauen Charakterisierung dieses selektiven Verhaltens wurden Computersimulationen durchgeführt, zum einen nach dem Mie-Formalismus und zum anderen mit der Methode der finiten Differenzen im Zeitregime (FDTD), einer numerischen Lösung der Maxwellgleichungen. Aufgrund von Schwierigkeiten bei der Probenherstellung und der daraus resultierenden fehlenden Möglichkeit, die benötigten Sub-µm-Strukturen geeignet in ihrer Größe zu variieren, wurden zur experimentellen Bestätigung sowohl die Wellenlänge der einfallenden Strahlung als auch die Struktur um einen Faktor von etwa 100000 erhöht und entsprechende Simulationen anhand von Streuexperimenten mit Mikrowellen an einem makroskopischen Metallgitter verifiziert. Mit Hilfe der Simulationsergebnisse wurden Vorraussagen über das spektrale Transmissionsverhalten eines ideal leitenden Metallgitters auf einem Glassubstrat in Abhängigkeit von Breite, Abstand und Dicke der Gitterstreben getroffen. Anhand von Parametervariationen wurden dann geeignete Werte dieser Größen für den Einsatz des Gitters als strukturierte Low-e-Beschichtung bestimmt. Durch Übertragung des spektralen Verhaltens eines solchen ideal leitenden Metallgitters auf eine reale Low-e-Schicht wurden die Auswirkungen einer Strukturierung dieser Schicht berechnet. Als Referenz diente dabei das Schichtsystem iplus E der Firma Interpane auf Floatglas. Die Rechnung zeigt, dass eine Strukturierung dieses Schichtsystems in ein Gitter mit 260 nm breiten Stäben im Abstand von 1080 nm die solare Transmission um 15 Prozentpunkte auf 0.72 steigen lässt. Die Dicke der Silberschicht im Schichtsystem muss dabei allerdings von 15 nm auf 60 nm angehoben werden. Der Emissionsgrad im IR-Bereich erhöht sich durch die Strukturierung von 0.03 auf 0.048. Kommt dieses strukturierte Low-e-Schichtsystem bei einer zweischeibigen Wärmeschutzverglasung zum Einsatz, so ließe sich der Gesamtenergiedurchlassgrad auf 0.70 im Vergleich zu 0.58 bei einer Verglasung mit dem konventionellen Low-e-Schichtsystem steigern. 80 Prozent des durch die flächige Low-e-Beschichtung bedingten Rückgangs im Gesamtenergiedurchlassgrad, dem g-Wert, lässt sich somit durch die Strukturierung wieder zurückgewinnen. Erkauft wird dies durch eine geringfügige Erhöhung des U-Werts der Verglasung von 1.06 W/(m² K) auf 1.12 W/(m² K). N2 - Modern solar glazing units make use of low-e coatings, i.e. coatings with emissivities of less than 0.05 in the IR spectral range. Low-e coatings mainly consist of one or two thin metal layers, usually silver, that determine the low-e behavior, and several additional layers for anti-oxidant, anti-reflex and adhesion-improving purposes. As the main application of these coatings is in architectural glass, the coatings are designed in such a way that visible transmittance is hardly affected. Unfortunately, due to the decrease in transmission above 700 nm, the low-e coatings reduce the solar transmittance of the glazing, which can be a hindrance for passive solar applications. For solar architecture, transparent insulation (TI) and solar collectors, it is the solar and not the visible transmittance that is the important factor. An ideal “solar low-e coating” for these applications would be extremely wavelength selective: i.e. a coating that reflects 300 K heat radiation, but is perfectly transparent in the range of solar radiation. Calculations show that the solar transmittance can be increased by about 20 to 25 percent compared to a conventional coating using this ideal solar low-e coating. A way of increasing the wavelength selectivity of a low-e coating is to microstructure the metal layer contained in the film system. Instead of a complete layer, a metal mesh is created on the glass substrate. If the distances between the metal bridges of this mesh are small compared to the IR wavelengths, the coating behaves as a homogeneous metal layer or a conventional low-e IR coating. However, for solar radiation, for which the wavelengths are small compared to the distances between the metal bridges, transmission is only slightly reduced. Numerical simulations using Mie scattering theory and the method of finite differences in the time domain (FDTD) were carried out to characterize this selective behavior. As there was no possibility for size-variation of sub-micron structured layers, structures as well as wavelengths were up-scaled by a factor of 100000. This transfers the problem into the microwave spectral range, in which scattering experiments were performed using a macroscopic metal grating. Predictions concerning the spectral transmission of a grating made from perfectly conducting metal on a glass substrate can be made using the numerical simulation results, depending on width, distance and height of the bars of the grating. Subsequent to testing various parameters, suitable values were determined for the metal mesh as a structured low-e coating. The effect of the micro-structuring on a real layer system was calculated by applying the spectral behavior of the perfectly conducting metal grating on an existing low-e coating. The film system Interpane iplus E on float glass was used as a reference coating. By structuring this system into bars with a width of 260 nm and distances of 1080 nm, the solar transmission can be increased by 15 percentage points to 0.72. The thickness of the silver layer in the film system has to be enlarged from 15 nm to 60 nm, however. IR emissivity is increased from 0.03 to 0.048 because of the structuring. If this solar low-e coating is employed in double glazings, the total solar energy transmittance, the g-value, can be increased to 0.70, compared to 0.58 for glazings using the conventional low-e coating. 80 percent of the decrease in g-value caused by the conventional low-e IR coating can be regained by microstructuring the coating; the slight disadvantage here is a marginal rise in the heat loss coefficient, the U-value, from 1.06 W/(m² K) to 1.12 W/(m² K). KW - Wärmeschutz KW - Glas KW - Metallschicht KW - FDTD KW - Low-e KW - Wärmeschutzverglasung KW - g-Wert KW - U-Wert KW - FDTD KW - Low-e KW - solar glazing KW - g-value KW - U-value Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22331 ER - TY - THES A1 - Loisel, Claudine T1 - Korrosionsempfindliche Dosimetermaterialien zur Überwachung der Umweltbedingungen an Kulturgütern T1 - Corrosion sensitive dosimeter material for environmental condition control in culture heritage N2 - Das Ziel dieser Arbeit war es, ein neues Dosimetermaterial zu entwickeln, das schneller reagiert als der klassische Glassensor. Einen vielversprechenden Ansatz dafür bietet der Sol-Gel Prozeß, mit dem dünne Schichten hergestellt werden können. Erste Versuche mit transparenten Schichten einer glasähnlichen Zusammensetzung (mit einem hohen Anteil an K und Ca) waren nicht erfolgreich, da eine deutliche Erhöhung der Reaktivität nicht erreicht wurde. Schichten, die einen sehr hohen Ca-Anteil aufweisen, zeigten allerdings die gewünschte Empfindlichkeit gegen Umwelteinflüsse. Die neuen „Rapid-Sensoren“ werden aus einem vorkonsensierten SiO2-Sol (Silizium (IV) Oxid-Sol) und Ca(NO3)2 4H2O in Aceton (Molverhältnis Ca : Si = 10 : 1) hergestellt. Objektträger werden mit diesem Sol beidseitig beschichtet. Die Tauchbeschichtung und die Temperung (5 Minuten bei 600 °C) wurden auf hohe Empfindlichkeit gegen Feuchtigkeit und Schadgase (Screening Test in einer Klimakammer) optimiert. Die neuen Sensoren sind im sichtbaren Spektralbereich nicht transparent, sondern opak, können aber wie die klassischen Glassensoren mit IR-Spektroskopie (in Transmission) ausgewertet werden, wobei der Anstieg der OH-Bande bei 3300 cm-1 als Mass für den Korrosionsfortschritt (genannt E-Wert) dient. Die aktive Sensorschicht setzt sich aus kristallinen und amorphen Bestandteilen zusammen. Die Zusammensetzung und Morphologie der Kristallphase wurde weitestgehend charakterisiert. Mit Lichtmikroskopie lässt sich die Oberfläche des Rapid-Sensors als eine Vielzahl kleiner polygoner Kristalle charakterisieren, für die im REM beobachtet verschiedene Wachstumsstufen erkennbar sind. Mit Hilfe der EDX-Analyse und ICP-AES wurden Si, O, Ca und Na als die Hauptelemente der Schicht bestimmt. Mit SNMS-Tiefenprofil konnte eine Diffusion von Na aus dem Objektträger in die Schicht nachgewiesen werden, was zu einer besonders guten Haftung führt. Mittels Röntgendiffraktometrie, IR- und Raman-Spektroskopie lassen sich Informationen über die Struktur der Schicht erhalten: die Kristallphase besteht aus einer Mischung aus Calciumoxid und Calcium-silicat-en, die mit XRD schwer zu unterscheiden sind. Auch im infraroten Spektralbereich weisen die Si-O-Schwingungen auf silicathaltige, Bestandteile in der amorphen Schicht hin. Für die Kalibrierung des neuen Dosimetermaterials sind Bewitterungen unter kontrollierten Bedingungen grundlegend notwendig. Dazu wurde ein Bewitterunsprogramm (I) mit hoher Feuchte und Temperatur (40 °C, 98 % r.F.) sowie ein zweites mit Zugabe von SO2 als Schadgas (II) gewählt. Beide Programme beschleunigen die Umweltwirkung im Vergleich zu Realbedingungen und haben sich in anderen Versuchen mit klassischen Glassensoren bewährt. Zusammenfassend lässt sich aus den Bewitterungsversuchen feststellen, dass der neue Sensor integrativ auf Temperatur, Feuchte, und Schadgas reagiert. Entsprechend der Reaktion des klassischen Sensors führt eine Temperatur / Feuchte- Bewitterung zur Bildung von CaCO3-Kristallen, während bei Anwesenheit von SO2 bevorzugt Gipskristalle gebildet werden. Diese Parallelen lassen den Schluß auf ein vergleichbares Reaktionsprinzip zu, obwohl die Reaktion der Calciumsilicate, aus denen die Schicht besteht, nur bedingt mit der für Glas typischen Verwitterung vergleichbar ist. Mit REM kann man bei Rapid-Sensoren beobachten, dass die Reaktion am Rand der Kristalle beginnt und in die Tiefe fortschreitet, bis zur vollständigen Umsetzung (Sättigung). Die kristallinen Korrosionsprodukte breiten sich im weiteren Verlauf auch auf der amorphen Schicht aus. Der Mechanismus ist nicht reversibel und entspricht damit nicht dem für poröse SiO2-Schichten beschriebenen Alterungprozeß. Erste Sensorstudien unter natürlicher Bewitterungsbedingungen ermöglichen einen Vergleich mit klassischen Glassensoren und umreissen das künftige Einsatzspektrum. Expositionen in der ISC-Außenstelle Bronnbach und im Grünen Gewölbe in Dresden zeigen, dass die Rapid-Sensoren schneller reagieren als klassische Glassensoren (Steigerung um etwa Faktor 3). Unter moderat korrosiven Bedingungen im Innenraum sind 4 Wochen Expositionszeit günstig (mindestens 3 Monate für Glassensoren) während im Außenraum Rapid-Sensoren innerhalb von 7 Tagen ansprechen (einige Wochen für herkömmliche Glassensoren). N2 - The goal of this work was to develop a new dosimeter material, which reacts faster than the classical glass sensor. The sol-gel process offers a promising approach for the preparation of thin layers. First attempts with transparent layers with a composition similar sensitive glass (with a high concentration of K and Ca) were not successful, since a clear increase of reactivity was not reached. Layers, which exhibit a very high calcium concentration finally showed the desired sensitivity to environmental influences. The new "Rapid-Sensor" is prepared from a pre-condensed SiO2-Sol (silicon (IV) oxide Sol) and Ca(NO3)24H2O in acetone (molar ratio Ca : Si = 10 : 1). Microscopic slides are coated with this sol from both sides by dip coating. The curing process (5 minutes at 600 °C) has been optimised for high sensitivity to humidity and pollutants (screening test in a climatic chamber). The new sensors are not transparent, but opaque. Nevertheless, they can be evaluated like the classical glass sensors with IR spectroscopy (in transmission mode), whereby the increase of the OH-band at 3300 cm-1 serves as a measure for the corrosion progress (so-called E-value). The sensitive coating consists of crystalline and amorphous components. The composition and morphology of the crystal phase were characterised as far as possible. With light microscopy the surface of the Rapid-Sensor can be described as a multiplicity of small polygonal crystals, for which in the SEM different growth steps are recognisable. With EDX and ICP AES analysis, the elements Si, O, Ca were determined as the main elements of the layer. With SNMS depth profile the diffusion of Na from the support (microscopic slide) into the layer can be proven, what leads to a particularly good adhesion. By means of X-ray, IR and Raman spectroscopy information about the structure can be received: the crystal phase consists of a mixture of calcium oxides and silicates, which can not be differentiated further with XRD. In the infrared spectrum signals designated to vibrations of Si-O confirm that silicates are present in the amorphous layer. For the calibration of the new dosimeter material, weathering experiments under controlled conditions are fundamentally necessary. Therefore, an accelerated ageing program (I) with high humidity and temperature (40 °C, 98 % r.F.) as well as a second program with the addition of SO2 as pollutants (II) has been selected. Both programs accelerate the environmental effect as compared with natural conditions and have been applied in previous experiments with classical glass sensors. As a conclusion, it can be stated from the environmental testing that the new sensor integrates the impact of temperature, humidity, and pollutants. Similar to the reaction of the classical sensor weathering at high temperature and high humidity leads to the formation of CaCO3 crystals, whereas in the presence of SO2 gypsum crystals are preferably formed. These similarities permit the conclusion that a comparable reaction principle might exist, although the reaction of the calcium silicate, of which the layer consists, is not necessarily comparable with the typical glass weathering. With SEM one can observe that the reaction of Rapid-Sensors begins at the edge of the crystals and progresses into depth, up to complete conversion (saturation) has been achieved. The crystalline corrosion products spread over the amorphous layer. The mechanism is not reversible and does not correspond thereby to the ageing process described for porous coatings of SiO2. First sensor studies under natural weathering conditions make a comparison possible with classical glass sensors and outline the future spectrum of use. Exposures in Bronnbach and in the Grünen Gewölbe Museum (Green Dome) in Dresden show that the Rapid-Sensors react faster than classical glass sensors (about three times increase). Under moderately corrosive conditions indoor 4 weeks exposure time are requested (at least 3 months for glass sensors). For outdoor applications Rapid-Sensors respond favourably within 7 days (some weeks for conventional glass sensors). KW - Kulturgut KW - Korrosion KW - Feuchtigkeitssensor KW - Temperatursensor KW - Gassensor KW - Dosimeter KW - Sensor KW - Korrosionsempfindliche KW - Glas KW - Silicate KW - dosimeter KW - sensor KW - corrosion sensitive KW - glass KW - silicate Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10835 ER -