TY - THES A1 - Rumpel, Matthias T1 - Development of Components for Solid-State Batteries and their Characterization T1 - Entwicklung von Komponenten für Festkörperbatterien und deren Charakterisierung N2 - This Ph.D. thesis has addressed several main issues in current ASSB research within four studies. Ceramic ASSBs are meant to enable the implementation of Li-metal anodes and high voltage cathode materials, which would increase energy density, power density, life time as well as safety aspects in comparison with commercially available liquid electrolyte LiBs. In this thesis, several scientific questions arising on the cathode side of ASSBs have been focused on. With respect to the target system of a ternary composite bulk cathode consisting of ceramic active material, ceramic SSE and an electrically conductive component, studies about the thermal stabilities of these components and their impact on the electrochemical performance have been conducted. Particulate bulk cathode composites have to fulfil electrochemical, chemical, mechanical and structural requirements in order to compete with commercial LiBs. Particularly, the production process requires high-temperature sintering to obtain firmly bonded contacts in order to maximize the electrochemically active area, charge transfer and ionic conduction. However, interdiffusion, intermixing and decomposition of the initial components during sintering result in low-performing ASSBs so far. These side reactions during high-temperature treatment have been investigated in order to gain a better understanding of these mechanisms and to enable a better controlling of the manufacturing process as well as to simplify the choice of material combinations. The first two parts of this thesis deal with the thermal stability of the ceramic SSE LATP in combination with various active materials and with the validation of a probable improvement of the sintering process due to liquid phase sintering of LATP by adding Li3PO4. In the third and fourth parts, the impact of interdiffusion, intermixing and decomposition on the electrochemical performance of TF-SSBs based on the active material LMO and the ceramic SSE Ga-LLZO has been investigated. N2 - Diese Dissertation befasst sich in vier Studien mit mehreren Hauptthemen der aktuellen Festkörperbatterieforschung (engl.: all solid-state battery, ASSB). Keramische Festkörperbatterien sollen den Einsatz von Li-Metallanoden und Hochvoltkathodenmaterialien ermöglichen, was die Energiedichte, Leistungsdichte, Lebensdauer sowie Sicherheitsaspekte im Vergleich zu kommerziell erhältlichen Lithiumionenbatterien mit flüssigen Elektrolyten erhöhen würde. In dieser Arbeit wurden mehrere wissenschaftliche Fragestellungen untersucht, die sich auf der Kathodenseite von ASSBs ergeben. Im Hinblick auf das Zielsystem einer ternären Kompositkathode, bestehend aus keramischem Aktivmaterial, keramischem Festkörperelektrolyt und einer elektrisch leitfähigen Komponente, wurden Untersuchungen über die thermischen Stabilitäten dieser Komponenten und deren Einfluss auf die elektrochemische Leistung durchgeführt. Partikuläre Kathodenkomposite müssen elektrochemische, chemische, mechanische und strukturelle Anforderungen erfüllen, um mit kommerziellen Lithiumionenbatterien konkurrieren zu können. Insbesondere erfordert der Produktionsprozess ein Hochtemperatursintern, um eine stoffschlüssige Anbindung zu erhalten, damit die elektrochemisch aktive Fläche, der Ladungstransfer und die Ionenleitung maximiert werden können. Allerdings führen Interdiffusion, Vermischung und Zersetzung der Ausgangskomponenten während des Sinterns bisher zu ASSBs mit geringer Leistung. Diese Nebenreaktionen während der Hochtemperaturbehandlung wurden untersucht, um ein besseres Verständnis dieser Mechanismen zu erlangen und eine bessere Steuerung des Herstellungsprozesses sowie eine einfachere Auswahl von Materialkombinationen zu ermöglichen. Die ersten beiden Teile dieser Arbeit befassen sich mit der thermischen Stabilität des Festkörperelektrolyten LATP in Kombination mit verschiedenen Aktivmaterialien und mit der Validierung einer möglichen Verbesserung des Sinterprozesses durch Flüssigphasensinterung von LATP durch Zugabe von Li3PO4. Im dritten und vierten Teil wurde der Einfluss von Interdiffusion, Durchmischung und Zersetzung auf die elektrochemische Leistung von Dünnschicht-Festkörperbatterien basierend auf dem Aktivmaterial LMO und dem keramischen Festkörperelektrolyten Ga-LLZO untersucht. KW - Elektrochemie KW - all solid-state battery KW - solid-state electrolyte KW - lithium-ion battery KW - electrochemistry KW - Festkörperakkumulator KW - Lithium-Ionen-Akkumulator KW - Festelektrolyt KW - Festkörperbatterie KW - Lithium-Ionen Batterie KW - Festkörperelektrolyt Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-347154 ER - TY - THES A1 - Hofmann, Michael T1 - Overcoming Obstacles in the Aqueous Processing of Nickel-rich Layered Oxide Cathode Materials T1 - Überwindung von Hindernissen bei der wässrigen Verarbeitung von nickelreichen Schichtoxid-Kathodenmaterialien N2 - The implementation of a water-based cathode manufacturing process is attractive, given the prospect of improved sustainability of future lithium-ion batteries. However, the sensitivity of many cathode materials to water poses a huge challenge. Within the scope of this work, a correlation between the water sensitivity of cathode materials from the class of layered oxides and their elemental composition was identified. In particular for the cathode material LiNi0.8Co0.15Al0.05O2 (NCA), the processes taking place in aqueous medium were clarified in detail. Based on this knowledge, the surface of NCA particles could be specifically modified, which led to a reduced water sensitivity. As a result, the electrochemical performance of cells with water-based NCA cathodes was significantly improved and a remarkable long-term cycling performance was achieved. The present work contributes to a deeper understanding of the water sensitivity of cathode materials and at the same time presents a promising approach to overcome this obstacle. Consequently, this work advances the successful widespread realization of water-based cathode manufacturing. N2 - Die Nachhaltigkeit zukünftiger Lithium-Ionen-Batterien kann durch die Implementierung eines wasserbasierten Herstellungsverfahrens für Kathoden verbessert werden. Die Wasserempfindlichkeit vieler Kathodenmaterialien stellt hierbei jedoch eine große Herausforderung dar. Im Rahmen dieser Arbeit wurde ein Zusammenhang zwischen der Wasserempfindlichkeit von Kathodenmaterialien der Klasse der Schichtoxide und deren Elementzusammensetzung hergestellt. Insbesondere für das extrem wasserempfindliche Kathodenmaterial LiNi0.8Co0.15Al0.05O2 (NCA) wurden die im wässrigen Medium ablaufenden Prozesse detailliert aufgeklärt. Auf Basis dieser Erkenntnisse konnte die Oberfläche von NCA-Partikeln gezielt modifiziert und damit die Wasserempfindlichkeit reduziert werden. Infolgedessen konnte die elektrochemische Performance von Zellen mit wasserbasierten NCA-Kathoden signifikant verbessert und eine bemerkenswerte Langzeitperformance erzielt werden. Die vorliegende Arbeit trägt somit zu einem tieferen Verständnis der Wasserempfindlichkeit von Kathodenmaterialien bei und liefert zugleich einen vielversprechenden Ansatz, um diese zu minimieren. So wird die erfolgreiche Realisierung der wässrigen Kathodenherstellung vorangetrieben. KW - Elektrochemie KW - Kathode KW - Lithium-Ionen-Akkumulator KW - cathode material KW - aqueous processing KW - lithium-ion battery KW - layered oxides Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-273787 ER - TY - THES A1 - Bittner, Andreas T1 - Innovative Materialkonzepte für elektrochemische Energiespeicher T1 - Innovative Material Concepts for Electrochemical Energy Storage N2 - Im Rahmen der vorliegenden Arbeit wurde ein neuer Beschichtungstyp für die Elektrodenmaterialien von Lithium-Ionen-Akkumulatoren entwickelt und charakterisiert. Dieser besteht aus einem speziellen anorganisch-organischen Hybridpolymer, das sich bezüglich seiner Zusammensetzung und Funktion gegenüber bestehenden Beschichtungsmaterialien abhebt. Das anorganisch-organische Netzwerk des Hybridpolymers konnte mittels Feststoff-NMR-Messungen vollständig aufgeklärt werden. Dabei zeigte sich ein stabiles anorganisches Gerüst aus hoch vernetzten Polysiloxan-Einheiten. Zusätzliche organische Modifizierungen liegen als lange bewegliche Ketten mit funktionellen Polyethylenoxid-Einheiten vor oder sind in Form von Polyethern und Diolen vernetzt. Mit dieser speziellen Netzwerkstruktur ist es möglich, Materialeigenschaften zu erzeugen, die über solche von rein anorganischen und rein organischen Beschichtungen hinausgehen. Zu den mit verschiedenen Methoden nachgewiesenen Eigenschaften zählen eine hohe ionische Leitfähigkeit von 10\(^{-4}\) S/cm, eine hohe Elastizität mit E = 63 kPa, eine hohe elektrochemische Stabilität bis 5,0 V vs. Li/Li\(^+\) und eine hohe thermische Stabilität. Eine weitere Besonderheit des neuen Beschichtungsmaterials ist die mehrstufige Vernetzung der anfänglichen Prekursoren zu einem Hybridpolymer-Sol und dem abschließenden Hybridpolymer-Gel. Die im Beschichtungssol vorliegende Teilvernetzung der Vorstufen konnte detailliert mittels Flüssig-NMR-Messungen untersucht und beschrieben werden. Aus den Messungen ließ sich folgern, dass die organisch und anorganisch vernetzbaren Gruppen im Sol teilweise vernetzt vorliegen. Die sterisch erreichbaren Si-OR-Gruppen der so entstandenen Oligomere sind vorwiegend nicht hydrolysiert, wodurch deren anorganische Anbindung an die OH-Gruppen der Partikeloberflächen kinetisch bevorzugt ist. Damit lassen sich besonders homogene und vollständig bedeckende Beschichtungen der Elektrodenmaterialien erzeugen. Dies konnte mit verschiedenen physikalischen und chemischen Methoden nachgewiesen werden: simulationsgestützte Rückstreuanalysen mittels REM, hochaufgelöste TEM-Aufnahmen sowie Elementanalysen durch EDX und XPS. Nach der Optimierung des nasschemischen Beschichtungsprozesses über Rotationsverdampfen ergaben sich für die verschiedenen Elektrodenmaterialien Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) jeweils etwa 20 nm dicke Beschichtungen mit Hybridpolymer. Die Frage nach deren Lösungsmittelbeständigkeit konnte durch die Analyse von behandelten Proben mit TG, REM, XPS und ICP-OES aufgeklärt werden. Dabei zeigte sich sowohl für die Behandlung mit NMP, dem klassischen Lösungsmittel bei der Elektrodenfertigung mit PVDF-Binder, als auch für die Behandlung mit dessen umweltschonenderem Ersatzstoff Aceton eine gute Beständigkeit der Beschichtung. Die Beschichtung löste sich in den Lösungsmitteln an, blieb allerdings als geschlossene nanoskalige Beschichtung erhalten. Lediglich gegenüber dem Lösungsmittel H\(_2\)O, das in Kombination mit dem neuen Binder CMC eingesetzt wird, wurde eine mangelnde Schichtstabilität deutlich. Das dafür verantwortliche Quellverhalten der Beschichtung konnte mittels Dünnschicht-Modellsystem und daran durchgeführten REM-, IR- und EPA-Untersuchungen aufgeklärt werden. Die Optimierung des Hybridpolymer-Materials bezüglich einer besseren H\(_2\)O-Beständigkeit übersteigt den Rahmen dieser Arbeit und liefert die Grundlage für weitere künftige Forschungsarbeiten. Aufgrund der vollständigen Bedeckung der neuen Beschichtung, ihrer besonderen Eigenschaften und ihrer Beständigkeit bei der klassischen Elektrodenfertigung ist es möglich, die Elektrodenmaterialien grundlegend hinsichtlich ihrer wichtigsten Eigenschaften zu verbessern. Hierfür wurden sowohl über die NMP- als auch über die Aceton-Route Elektroden gefertigt und zu Halbzellen und Vollzellen verarbeitet. Die REM-Analyse der Elektroden zeigte, dass die Partikelbeschichtungen keinen negativen Einfluss auf die Homogenität und Morphologie der Elektroden ausüben. Damit war es möglich, jeweils einen direkten Vergleich von beschichteten und unbeschichteten Materialien hinsichtlich ihrer elektrochemischen Performance anzustellen. Für die Kathodenmaterialien Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) ergaben die Zyklenfestigkeits- und Impedanzmessungen klare Verbesserungen durch die Beschichtung. Verbunden mit einer Verbesserung der Energiedichte erhöhte sich bei beiden Materialien die Zyklenfestigkeit um mehr als 60 %. Bei Li(Mn,Ni)\(_2\)O\(_4\) zeigt sich die Verbesserung in einer erhöhten Zellspannung durch das vergleichsweise hohe Redoxpotential des Materials von etwa 4,7 V vs. Li/Li\(^+\), während sich bei Li(Ni,Co,Mn)O\(_2\) die Hochvoltfähigkeit des Materials verbessert, was mit einer vergrößerten Speicherkapazität verbunden ist. Dabei ist herauszustellen, dass für keines der Materialien ein negativer Einfluss der dünnen Beschichtung auf die Leistungsdichte festgestellt werden konnte. Der erwartete Mechanismus für die verbesserte Elektrodenfunktion durch das Hybridpolymer ist die Bildung einer physikalischen Schutzschicht in Form einer Li\(^+\)-leitfähigen Membran. Diese umgibt das Elektrodenmaterial vollständig, ermöglicht die Ladungsträgerinterkalation und schützt die Elektrode gleichzeitig vor irreversiblen Reaktionen mit dem Elektrolyten. Damit verbunden ist eine verminderte Mn-Auslösung und eine verminderte Entwicklung von isolierenden Deckschichten aus Reaktionsprodukten wie LiF, Li\(_2\)O, Li\(_2\)CO\(_3\), was sich positiv auf die Alterung der Batteriezellen auswirkt. Die Funktion der Beschichtung wurde primär auf den Kathodenmaterialien demonstriert. Doch auch auf der Anodenseite wurde ihre Anwendungstauglichkeit aufgezeigt, was das große Potential der Beschichtung für eine breite Anwendung in Lithium-Ionen-Batterien verdeutlicht. N2 - Concerning its application on the electrode materials of lithium-ion batteries, in this thesis a new type of coating was developed and investigated. The new coating consists of an inorganic-organic hybrid polymer, which significantly differs from existing coating materials regarding composition and function. Its specific inorganic-organic network was characterized by solid-state NMR, which revealed stable inorganic domains consisting of highly cross-linked polysiloxane units with organic modifications. These modifications are long and flexible chains with functional polyethylene oxide units as well as networks cross-linked via polyethers and diols. With its special structure, the hybrid polymer shows material properties which surpass those of pure inorganic and pure organic materials. The properties were validated by different methods and include a high ionic conductivity of 10\(^{-4}\) S/cm, a high elasticity of E = 63 kPa, a high electrochemical stability of 5.0 V vs. Li/Li\(^+\), and a high thermal stability. Another distinctive feature of the new coating is its gradual network formation, starting with the initial precursors, leading to a hybrid polymer sol and ending with the final hybrid polymer gel. The partial cross-linkage of the precursors in the sol was investigated with liquid-state NMR. Based on the measurements it could be concluded that the organically and inorganically cross-linkable groups are partly interconnected in the sol. The sterically accessible Si-OR groups are predominantly not hydrolyzed. So an inorganic linkage of the hybrid polymer sol’s oligomers to the OH groups of the particles’ surfaces is kinetically favored, which enables the creation of particularly homogeneous and entire particle coatings. This was shown by several physical and chemical methods of measurement: simulation-based backscattered electron analysis via SEM, high-resoluted images via TEM and elemental analysis by means of EDS and XPS. After optimization of the wet chemical coating processes via rotary evaporation, hybrid polymer coatings of approximately 20 nm were realized on Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) and Li(Mn,Ni)\(_2\)O\(_4\). The solvent resistance of the coatings was investigated by TG, SEM, XPS and ICP-OES. These measurements revealed a good resistance against NMP, the classical solvent for the electrode production with PVDF binder. Similar results were obtained for the environmentally friendly solvent acetone. However, a partial dissolution was observed in both solvents. Nevertheless, a closed nanocoating remained on the particles’ surfaces after solvent treatment. Only for the solvent H\(_2\)O, which is used in combination with the binder CMC, an insufficient resistance became evident, caused by a swelling of the coating that was detected by means of a thin film model system and measurements with SEM, IR, and EPA. An optimization of the hybrid polymer material considering the H\(_2\)O resistance would exceed the scope of this work and provides the basis for future scientific research. Based on the flawless new coating, its specific properties and its resistance during the classical electrode production, it is possible to fundamentally improve electrode materials regarding their most important characteristics. For that reason electrodes were fabricated with NMP and with acetone as solvent and processed to half and full cells. Analysis with SEM revealed that the hybrid polymer coating had no impact on the homogeneity and morphology of the composite electrodes, enabling a direct comparison of the coated and uncoated materials with regard to their electrochemical performance. For the cathode materials, Li(Ni,Co,Mn)O\(_2\) and Li(Mn,Ni)\(_2\)O\(_4\), cycling and impedance measurements showed that by the coating both materials have a considerably improved cycling stability of more than 60 %, going along with an increased energy density. Regarding Li(Mn,Ni)\(_2\)O\(_4\) the improvement is expressed in an increased cell voltage compared to typical materials because of its high redox potential of about 4.7 V vs. Li/Li\(^+\). In the case of Li(Ni,Co,Mn)O\(_2\) an improved high voltage stability enables higher operating voltages and consequently higher capacities. It has to be pointed out that no negative influence of the thin coating on the power density could be detected. The formation of a physical protection layer in the form of a Li\(^+\) conducting membrane is the expected mechanism for the improved electrode function by the hybrid polymer, hence, protecting the electrode against undesired reactions with the electrolyte. As a consequence the Mn leaching and the evolution of insulating surface layers consisting of reaction products like LiF, Li\(_2\)O and Li\(_2\)CO\(_3\) is suppressed, leading to a reduced aging of the electrode materials. The coating function was primarily demonstrated for the cathode materials, but its suitability was also shown on the anode side, revealing the large potential of the coating for a broad application in lithium-ion batteries. KW - Lithium-Ionen-Akkumulator KW - Beschichtung KW - Polymere KW - Lithium-Ionen-Batterie KW - beschichtetes Elektrodenmaterial KW - anorganisch-organisches Hybridpolymer KW - lithium-ion battery KW - coated electrode material KW - inorganic-organic hybrid polymer KW - core-shell particles KW - improved cyle life KW - Kern-Schale-Partikel KW - verbesserte Zyklenfestigkeit Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152300 ER -