TY - JOUR A1 - Conrads, Nora A1 - Grunz, Jan-Peter A1 - Huflage, Henner A1 - Luetkens, Karsten Sebastian A1 - Feldle, Philipp A1 - Grunz, Katharina A1 - Köhler, Stefan A1 - Westermaier, Thomas T1 - Accuracy of pedicle screw placement using neuronavigation based on intraoperative 3D rotational fluoroscopy in the thoracic and lumbar spine JF - Archives of Orthopaedic and Trauma Surgery N2 - Introduction In spinal surgery, precise instrumentation is essential. This study aims to evaluate the accuracy of navigated, O-arm-controlled screw positioning in thoracic and lumbar spine instabilities. Materials and methods Posterior instrumentation procedures between 2010 and 2015 were retrospectively analyzed. Pedicle screws were placed using 3D rotational fluoroscopy and neuronavigation. Accuracy of screw placement was assessed using a 6-grade scoring system. In addition, screw length was analyzed in relation to the vertebral body diameter. Intra- and postoperative revision rates were recorded. Results Thoracic and lumbar spine surgery was performed in 285 patients. Of 1704 pedicle screws, 1621 (95.1%) showed excellent positioning in 3D rotational fluoroscopy imaging. The lateral rim of either pedicle or vertebral body was protruded in 25 (1.5%) and 28 screws (1.6%), while the midline of the vertebral body was crossed in 8 screws (0.5%). Furthermore, 11 screws each (0.6%) fulfilled the criteria of full lateral and medial displacement. The median relative screw length was 92.6%. Intraoperative revision resulted in excellent positioning in 58 of 71 screws. Follow-up surgery due to missed primary malposition had to be performed for two screws in the same patient. Postsurgical symptom relief was reported in 82.1% of patients, whereas neurological deterioration occurred in 8.9% of cases with neurological follow-up. Conclusions Combination of neuronavigation and 3D rotational fluoroscopy control ensures excellent accuracy in pedicle screw positioning. As misplaced screws can be detected reliably and revised intraoperatively, repeated surgery for screw malposition is rarely required. KW - pedicle screws KW - vertebral pedicles KW - fluoroscopy KW - neuronavigation KW - spine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324966 VL - 143 IS - 6 ER - TY - JOUR A1 - Gruschwitz, Philipp A1 - Hartung, Viktor A1 - Kleefeldt, Florian A1 - Ergün, Süleyman A1 - Lichthardt, Sven A1 - Huflage, Henner A1 - Hendel, Robin A1 - Kunz, Andreas Steven A1 - Pannenbecker, Pauline A1 - Kuhl, Philipp Josef A1 - Augustin, Anne Marie A1 - Bley, Thorsten Alexander A1 - Petritsch, Bernhard A1 - Grunz, Jan-Peter T1 - Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model JF - Scientific Reports N2 - This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall’s concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability. KW - experimental models of disease KW - preclinical research KW - translational research Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357912 VL - 13 ER - TY - JOUR A1 - Patzer, Theresa Sophie A1 - Kunz, Andreas Steven A1 - Huflage, Henner A1 - Conrads, Nora A1 - Luetkens, Karsten Sebastian A1 - Pannenbecker, Pauline A1 - Paul, Mila Marie A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Ultrahigh-resolution photon-counting CT in cadaveric fracture models: spatial frequency is not everything JF - Diagnostics N2 - In this study, the impact of reconstruction sharpness on the visualization of the appendicular skeleton in ultrahigh-resolution (UHR) photon-counting detector (PCD) CT was investigated. Sixteen cadaveric extremities (eight fractured) were examined with a standardized 120 kVp scan protocol (CTDI\(_{vol}\) 10 mGy). Images were reconstructed with the sharpest non-UHR kernel (Br76) and all available UHR kernels (Br80 to Br96). Seven radiologists evaluated image quality and fracture assessability. Interrater agreement was assessed with the intraclass correlation coefficient. For quantitative comparisons, signal-to-noise-ratios (SNRs) were calculated. Subjective image quality was best for Br84 (median 1, interquartile range 1–3; p ≤ 0.003). Regarding fracture assessability, no significant difference was ascertained between Br76, Br80 and Br84 (p > 0.999), with inferior ratings for all sharper kernels (p < 0.001). Interrater agreement for image quality (0.795, 0.732–0.848; p < 0.001) and fracture assessability (0.880; 0.842–0.911; p < 0.001) was good. SNR was highest for Br76 (3.4, 3.0–3.9) with no significant difference to Br80 and Br84 (p > 0.999). Br76 and Br80 produced higher SNRs than all kernels sharper than Br84 (p ≤ 0.026). In conclusion, PCD-CT reconstructions with a moderate UHR kernel offer superior image quality for visualizing the appendicular skeleton. Fracture assessability benefits from sharp non-UHR and moderate UHR kernels, while ultra-sharp reconstructions incur augmented image noise. KW - photon-counting KW - tomography KW - X-ray computed KW - fracture KW - cancellous bone KW - convolution kernel Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319281 SN - 2075-4418 VL - 13 IS - 10 ER - TY - JOUR A1 - Huflage, Henner A1 - Kunz, Andreas Steven A1 - Hendel, Robin A1 - Kraft, Johannes A1 - Weick, Stefan A1 - Razinskas, Gary A1 - Sauer, Stephanie Tina A1 - Pennig, Lenhard A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients JF - Diagnostics N2 - Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25–29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1%) compared with non-obese (0%) and pre-obese patients (4.1%). Conclusion: DECT facilitates a 30.8% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients. KW - dual-energy CT KW - dual-source CT KW - virtual non-contrast KW - radiation dose KW - spectral CT KW - obesity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313519 SN - 2075-4418 VL - 13 IS - 9 ER - TY - JOUR A1 - Huflage, Henner A1 - Grunz, Jan-Peter A1 - Patzer, Theresa Sophie A1 - Pannenbecker, Pauline A1 - Feldle, Philipp A1 - Sauer, Stephanie Tina A1 - Petritsch, Bernhard A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Kunz, Andreas Steven T1 - Potential of unenhanced ultra-low-dose abdominal photon-counting CT with tin filtration: a cadaveric study JF - Diagnostics N2 - Objectives: This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. Materials and Methods: Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. Results: Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5–5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95% confidence interval 0.763–0.906; p < 0.001) indicated good interrater reliability. Conclusions: Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy. KW - spectral shaping KW - tin prefiltration KW - abdominal imaging KW - ultra-low-dose CT KW - urinary calculi KW - photon-counting Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304122 SN - 2075-4418 VL - 13 IS - 4 ER - TY - JOUR A1 - Patzer, Theresa Sophie A1 - Kunz, Andreas Steven A1 - Huflage, Henner A1 - Luetkens, Karsten Sebastian A1 - Conrads, Nora A1 - Gruschwitz, Philipp A1 - Pannenbecker, Pauline A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Quantitative and qualitative image quality assessment in shoulder examinations with a first-generation photon-counting detector CT JF - Scientific Reports N2 - Photon-counting detector (PCD) CT allows for ultra-high-resolution (UHR) examinations of the shoulder without requiring an additional post-patient comb filter to narrow the detector aperture. This study was designed to compare the PCD performance with a high-end energy-integrating detector (EID) CT. Sixteen cadaveric shoulders were examined with both scanners using dose-matched 120 kVp acquisition protocols (low-dose/full-dose: CTDI\(_{vol}\) = 5.0/10.0 mGy). Specimens were scanned in UHR mode with the PCD-CT, whereas EID-CT examinations were conducted in accordance with the clinical standard as “non-UHR”. Reconstruction of EID data employed the sharpest kernel available for standard-resolution scans (ρ\(_{50}\) = 12.3 lp/cm), while PCD data were reconstructed with both a comparable kernel (11.8 lp/cm) and a sharper dedicated bone kernel (16.5 lp/cm). Six radiologists with 2–9 years of experience in musculoskeletal imaging rated image quality subjectively. Interrater agreement was analyzed by calculation of the intraclass correlation coefficient in a two-way random effects model. Quantitative analyses comprised noise recording and calculating signal-to-noise ratios based on attenuation measurements in bone and soft tissue. Subjective image quality was higher in UHR-PCD-CT than in EID-CT and non-UHR-PCD-CT datasets (all p < 0.001). While low-dose UHR-PCD-CT was considered superior to full-dose non-UHR studies on either scanner (all p < 0.001), ratings of low-dose non-UHR-PCD-CT and full-dose EID-CT examinations did not differ (p > 0.99). Interrater reliability was moderate, indicated by a single measures intraclass correlation coefficient of 0.66 (95% confidence interval: 0.58–0.73; p < 0.001). Image noise was lowest and signal-to-noise ratios were highest in non-UHR-PCD-CT reconstructions at either dose level (p < 0.001). This investigation demonstrates that superior depiction of trabecular microstructure and considerable denoising can be realized without additional radiation dose by employing a PCD for shoulder CT imaging. Allowing for UHR scans without dose penalty, PCD-CT appears as a promising alternative to EID-CT for shoulder trauma assessment in clinical routine. KW - bone KW - musculoskeletal system Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357925 VL - 13 ER - TY - JOUR A1 - Hennes, Jan-Lucca A1 - Huflage, Henner A1 - Grunz, Jan-Peter A1 - Hartung, Viktor A1 - Augustin, Anne Marie A1 - Patzer, Theresa Sophie A1 - Pannenbecker, Pauline A1 - Petritsch, Bernhard A1 - Bley, Thorsten Alexander A1 - Gruschwitz, Philipp T1 - An intra-individual comparison of low-keV photon-counting CT versus energy-integrating-detector CT angiography of the aorta JF - Diagnostics N2 - This retrospective study aims to provide an intra-individual comparison of aortic CT angiographies (CTAs) using first-generation photon-counting-detector CT (PCD-CT) and third-generation energy-integrating-detector CT (EID-CT). High-pitch CTAs were performed with both scanners and equal contrast-agent protocols. EID-CT employed automatic tube voltage selection (90/100 kVp) with reference tube current of 434/350 mAs, whereas multi-energy PCD-CT scans were generated with fixed tube voltage (120 kVp), image quality level of 64, and reconstructed as 55 keV monoenergetic images. For image quality assessment, contrast-to-noise ratios (CNRs) were calculated, and subjective evaluation (overall quality, luminal contrast, vessel sharpness, blooming, and beam hardening) was performed independently by three radiologists. Fifty-seven patients (12 women, 45 men) were included with a median interval between examinations of 12.7 months (interquartile range 11.1 months). Using manufacturer-recommended scan protocols resulted in a substantially lower radiation dose in PCD-CT (size-specific dose estimate: 4.88 ± 0.48 versus 6.28 ± 0.50 mGy, p < 0.001), while CNR was approximately 50% higher (41.11 ± 8.68 versus 27.05 ± 6.73, p < 0.001). Overall image quality and luminal contrast were deemed superior in PCD-CT (p < 0.001). Notably, EID-CT allowed for comparable vessel sharpness (p = 0.439) and less pronounced blooming and beam hardening (p < 0.001). Inter-rater agreement was good to excellent (0.58–0.87). Concluding, aortic PCD-CTAs facilitate increased image quality with significantly lower radiation dose compared to EID-CTAs KW - CT angiography KW - aorta KW - photon-counting-detector CT KW - radiation dose reduction KW - spectral imaging Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-355568 SN - 2075-4418 VL - 13 IS - 24 ER - TY - JOUR A1 - Gruschwitz, Philipp A1 - Hartung, Viktor A1 - Kleefeldt, Florian A1 - Peter, Dominik A1 - Lichthardt, Sven A1 - Huflage, Henner A1 - Grunz, Jan-Peter A1 - Augustin, Anne Marie A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Petritsch, Bernhard T1 - Continuous extracorporeal femoral perfusion model for intravascular ultrasound, computed tomography and digital subtraction angiography JF - PLoS One N2 - Objectives We developed a novel human cadaveric perfusion model with continuous extracorporeal femoral perfusion suitable for performing intra-individual comparison studies, training of interventional procedures and preclinical testing of endovascular devices. Objective of this study was to introduce the techniques and evaluate the feasibility for realistic computed tomography angiography (CTA), digital subtraction angiography (DSA) including vascular interventions, and intravascular ultrasound (IVUS). Methods The establishment of the extracorporeal perfusion was attempted using one formalin-fixed and five fresh-frozen human cadavers. In all specimens, the common femoral and popliteal arteries were prepared, introducer sheaths inserted, and perfusion established by a peristaltic pump. Subsequently, we performed CTA and bilateral DSA in five cadavers and IVUS on both legs of four donors. Examination time without unintentional interruption was measured both with and without non-contrast planning CT. Percutaneous transluminal angioplasty and stenting was performed by two interventional radiologists on nine extremities (five donors) using a broad spectrum of different intravascular devices. Results The perfusion of the upper leg arteries was successfully established in all fresh-frozen but not in the formalin-fixed cadaver. The experimental setup generated a stable circulation in each procedure (ten upper legs) for a period of more than six hours. Images acquired with CT, DSA and IVUS offered a realistic impression and enabled the sufficient visualization of all examined vessel segments. Arterial cannulating, percutaneous transluminal angioplasty as well as stent deployment were feasible in a way that is comparable to a vascular intervention in vivo. The perfusion model allowed for introduction and testing of previously not used devices. Conclusions The continuous femoral perfusion model can be established with moderate effort, works stable, and is utilizable for medical imaging of the peripheral arterial system using CTA, DSA and IVUS. Therefore, it appears suitable for research studies, developing skills in interventional procedures and testing of new or unfamiliar vascular devices. KW - continuous extracorporeal femoral perfusion model KW - novel human cadaveric perfusion model KW - computed tomography angiography (CTA) KW - digital subtraction angiography (DSA) KW - intravascular ultrasound (IVUS) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350136 SN - 1932-6203 VL - 18 IS - 5 ER - TY - JOUR A1 - Gruschwitz, Philipp A1 - Hartung, Viktor A1 - Ergün, Süleyman A1 - Peter, Dominik A1 - Lichthardt, Sven A1 - Huflage, Henner A1 - Hendel, Robin A1 - Pannenbecker, Pauline A1 - Augustin, Anne Marie A1 - Kunz, Andreas Steven A1 - Feldle, Philipp A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model JF - European Radiology Experimental N2 - Background With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. Methods After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall’s concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). Results UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). Conclusions Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. Relevance statement The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. Key points • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging. KW - CT angiography KW - femoral arteries KW - photon-counting computed tomography (CT) KW - small pixel effect KW - ultrahigh resolution Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357905 VL - 7 ER - TY - JOUR A1 - Huflage, Henner A1 - Fieber, Tabea A1 - Färber, Christian A1 - Knarr, Jonas A1 - Veldhoen, Simon A1 - Jordan, Martin C. A1 - Gilbert, Fabian A1 - Bley, Thorsten Alexander A1 - Meffert, Rainer H. A1 - Grunz, Jan-Peter A1 - Schmalzl, Jonas T1 - Interobserver reliability of scapula fracture classifications in intra- and extra-articular injury patterns JF - BMC Musculoskeletal Disorders N2 - Background Morphology and glenoid involvement determine the necessity of surgical management in scapula fractures. While being present in only a small share of patients with shoulder trauma, numerous classification systems have been in use over the years for categorization of scapula fractures. The purpose of this study was to evaluate the established AO/OTA classification in comparison to the classification system of Euler and Rüedi (ER) with regard to interobserver reliability and confidence in clinical practice. Methods Based on CT imaging, 149 patients with scapula fractures were retrospectively categorized by two trauma surgeons and two radiologists using the classification systems of ER and AO/OTA. To measure the interrater reliability, Fleiss kappa (κ) was calculated independently for both fracture classifications. Rater confidence was stated subjectively on a five-point scale and compared with Wilcoxon signed rank tests. Additionally, we computed the intraclass correlation coefficient (ICC) based on absolute agreement in a two-way random effects model to assess the diagnostic confidence agreement between observers. Results In scapula fractures involving the glenoid fossa, interrater reliability was substantial (κ = 0.722; 95% confidence interval [CI] 0.676–0.769) for the AO/OTA classification in contrast to moderate agreement (κ = 0.579; 95% CI 0.525–0.634) for the ER classification system. Diagnostic confidence for intra-articular fracture patterns was superior using the AO/OTA classification compared to ER (p < 0.001) with higher confidence agreement (ICC: 0.882 versus 0.831). For extra-articular fractures, ER (κ = 0.817; 95% CI 0.771–0.863) provided better interrater reliability compared to AO/OTA (κ = 0.734; 95% CI 0.692–0.776) with higher diagnostic confidence (p < 0.001) and superior agreement between confidence ratings (ICC: 0.881 versus 0.912). Conclusions The AO/OTA classification is most suitable to categorize intra-articular scapula fractures with glenoid involvement, whereas the classification system of Euler and Rüedi appears to be superior in extra-articular injury patterns with fractures involving only the scapula body, spine, acromion and coracoid process. KW - confidence KW - scapula KW - glenoid KW - fracture KW - classification KW - reliability Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299795 VL - 23 IS - 1 ER -