TY - JOUR A1 - Gram, Maximilian A1 - Gensler, Daniel A1 - Albertova, Petra A1 - Gutjahr, Fabian Tobias A1 - Lau, Kolja A1 - Arias-Loza, Paula-Anahi A1 - Jakob, Peter Michael A1 - Nordbeck, Peter T1 - Quantification correction for free-breathing myocardial T1ρ mapping in mice using a recursively derived description of a T\(_{1p}\)\(^{*}\) relaxation pathway JF - Journal of Cardiovascular Magnetic Resonance N2 - Background Fast and accurate T1ρ mapping in myocardium is still a major challenge, particularly in small animal models. The complex sequence design owing to electrocardiogram and respiratory gating leads to quantification errors in in vivo experiments, due to variations of the T\(_{1p}\) relaxation pathway. In this study, we present an improved quantification method for T\(_{1p}\) using a newly derived formalism of a T\(_{1p}\)\(^{*}\) relaxation pathway. Methods The new signal equation was derived by solving a recursion problem for spin-lock prepared fast gradient echo readouts. Based on Bloch simulations, we compared quantification errors using the common monoexponential model and our corrected model. The method was validated in phantom experiments and tested in vivo for myocardial T\(_{1p}\) mapping in mice. Here, the impact of the breath dependent spin recovery time T\(_{rec}\) on the quantification results was examined in detail. Results Simulations indicate that a correction is necessary, since systematically underestimated values are measured under in vivo conditions. In the phantom study, the mean quantification error could be reduced from − 7.4% to − 0.97%. In vivo, a correlation of uncorrected T\(_{1p}\) with the respiratory cycle was observed. Using the newly derived correction method, this correlation was significantly reduced from r = 0.708 (p < 0.001) to r = 0.204 and the standard deviation of left ventricular T\(_{1p}\) values in different animals was reduced by at least 39%. Conclusion The suggested quantification formalism enables fast and precise myocardial T\(_{1p}\) quantification for small animals during free breathing and can improve the comparability of study results. Our new technique offers a reasonable tool for assessing myocardial diseases, since pathologies that cause a change in heart or breathing rates do not lead to systematic misinterpretations. Besides, the derived signal equation can be used for sequence optimization or for subsequent correction of prior study results. KW - T1rho KW - radial KW - cardiac KW - correction KW - quantitative MRI KW - mapping KW - spin-lock KW - T1ρ Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300491 VL - 24 IS - 1 ER - TY - JOUR A1 - Ghafoor, Hina A1 - Nordbeck, Peter A1 - Ritter, Oliver A1 - Pauli, Paul A1 - Schulz, Stefan M. T1 - Can Religiosity and Social Support Explain Effects of Trait Emotional Intelligence on Health-Related Quality of Life: A Cross-Cultural Study JF - Journal of Religion and Health N2 - Religion and social support along with trait emotional intelligence (EI) help individuals to reduce stress caused by difficult situations. Their implications may vary across cultures in reference to predicting health-related quality of life (HRQoL). A convenience sample of N = 200 chronic heart failure (CHF) patients was recruited at cardiology centers in Germany (n = 100) and Pakistan (n = 100). Results indicated that trait-EI predicted better mental component of HRQoL in Pakistani and German CHF patients. Friends as social support appeared relevant for German patients only. Qualitative data indicate an internal locus of control in German as compared to Pakistani patients. Strengthening the beneficial role of social support in Pakistani patients is one example of how the current findings may inspire culture-specific treatment to empower patients dealing with the detrimental effects of CHF. KW - cross-cultural comparison KW - chronic heart failure KW - religion KW - social support KW - trait emotional intelligence KW - health-related quality of life Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232823 SN - 0022-4197 VL - 61 IS - 1 ER - TY - JOUR A1 - Gram, Maximilian A1 - Gensler, Daniel A1 - Winter, Patrick A1 - Seethaler, Michael A1 - Arias-Loza, Paula Anahi A1 - Oberberger, Johannes A1 - Jakob, Peter Michael A1 - Nordbeck, Peter T1 - Fast myocardial T\(_{1P}\) mapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern JF - Magnetic Resonance Materials in Physics, Biology and Medicine N2 - Purpose T\(_{1P}\) dispersion quantification can potentially be used as a cardiac magnetic resonance index for sensitive detection of myocardial fibrosis without the need of contrast agents. However, dispersion quantification is still a major challenge, because T\(_{1P}\) mapping for different spin lock amplitudes is a very time consuming process. This study aims to develop a fast and accurate T\(_{1P}\) mapping sequence, which paves the way to cardiac T1ρ dispersion quantification within the limited measurement time of an in vivo study in small animals. Methods A radial spin lock sequence was developed using a Bloch simulation-optimized sampling pattern and a view-sharing method for image reconstruction. For validation, phantom measurements with a conventional sampling pattern and a gold standard sequence were compared to examine T\(_{1P}\) quantification accuracy. The in vivo validation of T\(_{1P}\) mapping was performed in N = 10 mice and in a reproduction study in a single animal, in which ten maps were acquired in direct succession. Finally, the feasibility of myocardial dispersion quantification was tested in one animal. Results The Bloch simulation-based sampling shows considerably higher image quality as well as improved T\(_{1P}\) quantification accuracy (+ 56%) and precision (+ 49%) compared to conventional sampling. Compared to the gold standard sequence, a mean deviation of - 0.46 ± 1.84% was observed. The in vivo measurements proved high reproducibility of myocardial T\(_{1P}\) mapping. The mean T\(_{1P}\) in the left ventricle was 39.5 ± 1.2 ms for different animals and the maximum deviation was 2.1% in the successive measurements. The myocardial T\(_{1P}\) dispersion slope, which was measured for the first time in one animal, could be determined to be 4.76 ± 0.23 ms/kHz. Conclusion This new and fast T\(_{1P}\) quantification technique enables high-resolution myocardial T\(_{1P}\) mapping and even dispersion quantification within the limited time of an in vivo study and could, therefore, be a reliable tool for improved tissue characterization. KW - TT\(_{1rho}\) mapping KW - small animal KW - KWIC KW - radial KW - cardiac KW - mice KW - spin lock KW - T\(_{1P}\) dispersion KW - T\(_{1P}\) mapping Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268903 SN - 1352-8661 VL - 35 IS - 2 ER - TY - JOUR A1 - Wagenhäuser, Laura A1 - Rickert, Vanessa A1 - Sommer, Claudia A1 - Wanner, Christoph A1 - Nordbeck, Peter A1 - Rost, Simone A1 - Üçeyler, Nurcan T1 - X-chromosomal inactivation patterns in women with Fabry disease JF - Molecular Genetics & Genomic Medicine N2 - Background Although Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene (GLA), women may develop severe symptoms. We investigated X-chromosomal inactivation patterns (XCI) as a potential determinant of symptom severity in FD women. Patients and Methods We included 95 women with mutations in GLA (n = 18 with variants of unknown pathogenicity) and 50 related men, and collected mouth epithelial cells, venous blood, and skin fibroblasts for XCI analysis using the methylation status of the androgen receptor gene. The mutated X-chromosome was identified by comparison of samples from relatives. Patients underwent genotype categorization and deep clinical phenotyping of symptom severity. Results 43/95 (45%) women carried mutations categorized as classic. The XCI pattern was skewed (i.e., ≥75:25% distribution) in 6/87 (7%) mouth epithelial cell samples, 31/88 (35%) blood samples, and 9/27 (33%) skin fibroblast samples. Clinical phenotype, α-galactosidase A (GAL) activity, and lyso-Gb3 levels did not show intergroup differences when stratified for X-chromosomal skewing and activity status of the mutated X-chromosome. Conclusions X-inactivation patterns alone do not reliably reflect the clinical phenotype of women with FD when investigated in biomaterial not directly affected by FD. However, while XCI patterns may vary between tissues, blood frequently shows skewing of XCI patterns. KW - Fabry disease KW - Fabry genotype KW - Fabry phenotype KW - female Fabry patients KW - X-chromosomal inactivation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312795 VL - 10 IS - 9 ER - TY - JOUR A1 - Tolstik, Elen A1 - Ali, Nairveen A1 - Guo, Shuxia A1 - Ebersbach, Paul A1 - Möllmann, Dorothe A1 - Arias-Loza, Paula A1 - Dierks, Johann A1 - Schuler, Irina A1 - Freier, Erik A1 - Debus, Jörg A1 - Baba, Hideo A. A1 - Nordbeck, Peter A1 - Bocklitz, Thomas A1 - Lorenz, Kristina T1 - CARS imaging advances early diagnosis of cardiac manifestation of Fabry disease JF - International Journal of Molecular Sciences N2 - Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient’s prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90–96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD. KW - coherent anti-Stokes Raman scattering (CARS) microscopy KW - Raman micro-spectroscopy KW - cardiovascular diseases KW - Fabry Disease (FD) KW - Gb3 and lyso-Gb3 biomarkers KW - multivariate data analysis KW - immunohistochemistry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284427 SN - 1422-0067 VL - 23 IS - 10 ER - TY - JOUR A1 - Lau, Kolja A1 - Üçeyler, Nurcan A1 - Cairns, Tereza A1 - Lorenz, Lora A1 - Sommer, Claudia A1 - Schindehütte, Magnus A1 - Amann, Kerstin A1 - Wanner, Christoph A1 - Nordbeck, Peter T1 - Gene variants of unknown significance in Fabry disease: Clinical characteristics of c.376AG (p.Ser126Gly) JF - Molecular Genetics & Genomic Medicine N2 - Background Anderson–Fabry disease (FD) is an X-linked lysosomal storage disorder with varying organ involvement and symptoms, depending on the underlying mutation in the alpha-galactosidase A gene (HGNC: GLA). With genetic testing becoming more readily available, it is crucial to precisely evaluate pathogenicity of each genetic variant, in order to determine whether there is or might be not a need for FD-specific therapy in affected patients and relatives at the time point of presentation or in the future. Methods This case series investigates the clinical impact of the specific GLA gene variant c.376A>G (p.Ser126Gly) in five (one heterozygous and one homozygous female, three males) individuals from different families, who visited our center between 2009 and 2021. Comprehensive neurological, nephrological and cardiac examinations were performed in all cases. One patient received a follow-up examination after 12 years. Results Index events leading to suspicion of FD were mainly unspecific neurological symptoms. However, FD-specific biomarkers, imaging examinations (i.e., brain MRI, heart MRI), and tissue-specific diagnostics, including kidney and skin biopsies, did not reveal evidence for FD-specific symptoms or organ involvement but showed normal results in all cases. This includes findings from 12-year follow-up in one patient with renal biopsy. Conclusion These findings suggest that p.Ser126Gly represents a benign GLA gene variant which per se does not cause FD. Precise clinical evaluation in individuals diagnosed with genetic variations of unknown significance should be performed to distinguish common symptoms broadly prevalent in the general population from those secondary to FD. KW - diagnosis in Fabry disease KW - Fabry disease KW - gene variant KW - genotype/phenotype correlation KW - lysosomal storage disease Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312817 VL - 10 IS - 5 ER - TY - JOUR A1 - Liu, Dan A1 - Hu, Kai A1 - Lau, Kolja A1 - Kiwitz, Tobias A1 - Robitzkat, Katharina A1 - Hammel, Clara A1 - Lengenfelder, Björn Daniel A1 - Ertl, Georg A1 - Frantz, Stefan A1 - Nordbeck, Peter T1 - Impact of diastolic dysfunction on outcome in heart failure patients with mid-range or reduced ejection fraction JF - ESC Heart Failure N2 - Aims The role of diastolic dysfunction (DD) in prognostic evaluation in heart failure (HF) patients with impaired systolic function remains unclear. We investigated the impact of echocardiography-defined DD on survival in HF patients with mid-range (HFmrEF, EF 41–49%) and reduced ejection fraction (HFrEF, EF < 40%). Methods and results A total of 2018 consecutive hospitalized HF patients were retrospectively included and divided in two groups based on baseline EF: HFmrEF group (n = 951, aged 69 ± 13 years, 74.2% male) and HFrEF group (n = 1067, aged 68 ± 13 years, 76.3% male). Clinical data were collected and analysed. All patients completed ≥1 year clinical follow-up. The primary endpoint was defined as all-cause death (including heart transplantation) and cardiovascular (CV)-related death. All-cause mortality (30.8% vs. 24.9%, P = 0.003) and CV mortality (19.1% vs. 13.5%, P = 0.001) were significantly higher in the HFrEF group than the HFmrEF group during follow-up [median 24 (13–36) months]. All-cause mortality increased in proportion to DD severity (mild, moderate, and severe) in either HFmrEF (17.1%, 25.4%, and 37.0%, P < 0.001) or HFrEF (18.9%, 30.3%, and 39.2%, P < 0.001) patients. The risk of all-cause mortality [hazard ratio (HR) = 1.347, P = 0.015] and CV mortality (HR = 1.508, P = 0.007) was significantly higher in HFrEF patients with severe DD compared with non-severe DD after adjustment for identified clinical and echocardiographic covariates. For HFmrEF patients, severe DD was independently associated with increased all-cause mortality (HR = 1.358, P = 0.046) but not with CV mortality (HR = 1.155, P = 0.469). Conclusions Echocardiography-defined severe DD is independently associated with increased all-cause mortality in patients with HFmrEF and HFrEF. KW - heart failure with mid-range ejection fraction KW - heart failure with reduced ejection fraction KW - diastolic dysfunction KW - echocardiography KW - prognosis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258894 VL - 8 IS - 4 ER - TY - JOUR A1 - Petri, Nils A1 - Lengenfelder, Björn A1 - Voelker, Wolfram A1 - Nordbeck, Peter T1 - Interventional closure of aortomitral perforation after TAVR: A case report JF - Catheterization and Cardiovascular Interventions N2 - Despite TAVR emerging as the gold standard for a broad spectrum of patients, it is associated with serious complications. In this report we present a case, where a TAVR procedure led to a perforation at the aortomitral continuity, discuss the risk factors for the occurrence of perforations and how we decided to treat the patient. KW - medicine KW - closure AV fistula/AVM (CLAV) KW - transcatheter valveimplantation (TVI) KW - percutaneous valve therapy (PVT) KW - aortic valve disease percutaneous intervention (AVDP) KW - imaging TTE/TEE (ITTE) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256625 VL - 98 IS - 3 ER - TY - JOUR A1 - Chen, Menjia A1 - Liu, Dan A1 - Weidemann, Frank A1 - Lengenfelder, Björn Daniel A1 - Ertl, Georg A1 - Hu, Kai A1 - Frantz, Stefan A1 - Nordbeck, Peter T1 - Echocardiographic risk factors of left ventricular thrombus in patients with acute anterior myocardial infarction JF - ESC Heart Failure N2 - Aims This study aimed to identify echocardiographic determinants of left ventricular thrombus (LVT) formation after acute anterior myocardial infarction (MI). Methods and results This case–control study comprised 55 acute anterior MI patients with LVT as cases and 55 acute anterior MI patients without LVT as controls, who were selected from a cohort of consecutive patients with ischemic heart failure in our hospital. The cases and controls were matched for age, sex, and left ventricular ejection fraction. LVT was detected by routine/contrast echocardiography or cardiac magnetic resonance imaging during the first 3 months following MI. Formation of apical aneurysm after MI was independently associated with LVT formation [72.0% vs. 43.5%, odds ratio (OR) = 5.06, 95% confidence interval (CI) 1.65–15.48, P = 0.005]. Echocardiographic risk factors associated with LVT formation included reduced mitral annular plane systolic excursion (<7 mm, OR = 4.69, 95% CI 1.84–11.95, P = 0.001), moderate–severe diastolic dysfunction (OR = 2.71, 95% CI 1.11–6.57, P = 0.028), and right ventricular (RV) dysfunction [reduced tricuspid annular plane systolic excursion < 17 mm (OR = 5.48, 95% CI 2.12–14.13, P < 0.001), reduced RV fractional area change < 0.35 (OR = 3.32, 95% CI 1.20–9.18, P = 0.021), and enlarged RV mid diameter (per 5 mm increase OR = 1.62, 95% CI 1.12–2.34, P = 0.010)]. Reduced tricuspid annular plane systolic excursion (<17 mm) significantly associated with increased risk of LVT in anterior MI patients (OR = 3.84, 95% CI 1.37–10.75, P = 0.010), especially in those patients without apical aneurysm (OR = 5.12, 95% CI 1.45–18.08, P = 0.011), independent of body mass index, hypertension, anaemia, mitral annular plane systolic excursion, and moderate–severe diastolic dysfunction. Conclusions Right ventricular dysfunction as determined by reduced TAPSE or RV fractional area change is independently associated with LVT formation in acute anterior MI patients, especially in the setting of MI patients without the formation of an apical aneurysm. This study suggests that besides assessment of left ventricular abnormalities, assessment of concomitant RV dysfunction is of importance on risk stratification of LVT formation in patients with acute anterior MI. KW - myocardial infarction KW - aneurysm KW - left ventricular thrombusv KW - right ventricular dysfunction KW - echocardiography KW - cardiovascular magnetic resonance Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261067 VL - 8 IS - 6 ER - TY - JOUR A1 - Heidenreich, Julius F. A1 - Weng, Andreas M. A1 - Donhauser, Julian A1 - Greiser, Andreas A1 - Chow, Kelvin A1 - Nordbeck, Peter A1 - Bley, Thorsten A. A1 - Köstler, Herbert T1 - T1- and ECV-mapping in clinical routine at 3 T: differences between MOLLI, ShMOLLI and SASHA JF - BMC Medical Imaging N2 - Background T1 mapping sequences such as MOLLI, ShMOLLI and SASHA make use of different technical approaches, bearing strengths and weaknesses. It is well known that obtained T1 relaxation times differ between the sequence techniques as well as between different hardware. Yet, T1 quantification is a promising tool for myocardial tissue characterization, disregarding the absence of established reference values. The purpose of this study was to evaluate the feasibility of native and post-contrast T1 mapping methods as well as ECV maps and its diagnostic benefits in a clinical environment when scanning patients with various cardiac diseases at 3 T. Methods Native and post-contrast T1 mapping data acquired on a 3 T full-body scanner using the three pulse sequences 5(3)3 MOLLI, ShMOLLI and SASHA in 19 patients with clinical indication for contrast enhanced MRI were compared. We analyzed global and segmental T1 relaxation times as well as respective extracellular volumes and compared the emerged differences between the used pulse sequences. Results T1 times acquired with MOLLI and ShMOLLI exhibited systematic T1 deviation compared to SASHA. Myocardial MOLLI T1 times were 19% lower and ShMOLLI T1 times 25% lower compared to SASHA. Native blood T1 times from MOLLI were 13% lower than SASHA, while post-contrast MOLLI T1-times were only 5% lower. ECV values exhibited comparably biased estimation with MOLLI and ShMOLLI compared to SASHA in good agreement with results reported in literature. Pathology-suspect segments were clearly differentiated from remote myocardium with all three sequences. Conclusion Myocardial T1 mapping yields systematically biased pre- and post-contrast T1 times depending on the applied pulse sequence. Additionally calculating ECV attenuates this bias, making MOLLI, ShMOLLI and SASHA better comparable. Therefore, myocardial T1 mapping is a powerful clinical tool for classification of soft tissue abnormalities in spite of the absence of established reference values. KW - T1 mapping KW - MOLLI KW - ShMOLLI KW - SASHA KW - Extracellular volume KW - 3 T Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201999 VL - 19 ER -