TY - JOUR A1 - Menekse, Kaan A1 - Mahl, Magnus A1 - Albert, Julius A1 - Niyas, M. A. A1 - Shoyama, Kazutaka A1 - Stolte, Matthias A1 - Würthner, Frank T1 - Supramolecularly Engineered Bulk‐Heterojunction Solar Cells with Self‐Assembled Non‐Fullerene Nanographene Tetraimide Acceptors JF - Solar RRL N2 - A series of novel imide‐functionalized C\(_{64}\) nanographenes is investigated as acceptor components in organic solar cells (OSCs) in combination with donor polymer PM6. These electron‐poor molecules either prevail as a monomer or self‐assemble into dimers in the OSC active layer depending on the chosen imide substituents. This allows for the controlled stacking of electron‐poor and electron‐rich π–scaffolds to establish a novel class of non‐fullerene acceptor materials to tailor the bulk‐heterojunction morphology of the OSCs. The best performance is observed for derivatives that are able to self‐assemble into dimers, reaching power conversion efficiencies of up to 7.1%. KW - nanographene KW - non-fullerene acceptors KW - organic solar cells KW - polycyclic aromatic hydrocarbons KW - self-assembly Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312099 VL - 7 IS - 2 ER - TY - JOUR A1 - Meza-Chincha, Ana-Lucia A1 - Lindner, Joachim O. A1 - Schindler, Dorothee A1 - Schmidt, David A1 - Krause, Ana-Maria A1 - Röhr, Merle I. S. A1 - Mitrić, Roland A1 - Würthner, Frank T1 - Impact of substituents on molecular properties and catalytic activities of trinuclear Ru macrocycles in water oxidation N2 - Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites. KW - water oxidation KW - self-assembly KW - solar fuels KW - supramolecular materials KW - catalysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204653 UR - https://doi.org/10.1039/D0SC01097A SN - 2041-6539 ER - TY - JOUR A1 - Hecht, Markus A1 - Leowanawat, Pawaret A1 - Gerlach, Tabea A1 - Stepanenko, Vladimir A1 - Stolte, Matthias A1 - Lehmann, Matthias A1 - Würthner, Frank T1 - Self‐Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetra‐Bay‐Acyloxy Perylene Bisimide JF - Angewandte Chemie International Edition N2 - A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self‐assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen‐bond‐directed self‐assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid‐crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo‐ or heterochiral self‐assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self‐sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self‐assemblies proceeds by dissociation via the monomeric state. KW - liquid crystals KW - noncovalent interactions KW - self-assembly KW - structure elucidation KW - supramolecular chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224586 VL - 59 IS - 39 SP - 17084 EP - 17090 ER - TY - JOUR A1 - Syamala, Pradeep P. N. A1 - Würthner, Frank T1 - Modulation of the Self‐Assembly of π‐Amphiphiles in Water from Enthalpy‐ to Entropy‐Driven by Enwrapping Substituents JF - Chemistry – A European Journal N2 - Depending on the connectivity of solubilizing oligoethylene glycol (OEG) side chains to the π‐cores of amphiphilic naphthalene and perylene bisimide dyes, self‐assembly in water occurs either upon heating or cooling. Herein, we show that this effect originates from differences in the enwrapping capability of the π‐cores by the OEG chains. Rylene bisimides bearing phenyl substituents with three OEG chains attached directly to the hydrophobic π‐cores are strongly sequestered by the OEG chains. These molecules self‐assemble at elevated temperatures in an entropy‐driven process according to temperature‐ and concentration‐dependent UV/Vis spectroscopy and calorimetric dilution studies. In contrast, for rylene bisimides in which phenyl substituents with three OEG chains are attached via a methylene spacer, leading to much weaker sequestration, self‐assembly originates upon cooling in an enthalpy‐driven process. Our explanation for this controversial behavior is that the aggregation in the latter case is dictated by the release of “high energy water” from the hydrophobic π‐surfaces as well as dispersion interactions between the π‐scaffolds which drive the self‐assembly in an enthalpically driven process. In contrast, for the former case we suggest that in addition to the conventional explanation of a dehydration of hydrogen‐bonded water molecules from OEG units it is in particular the increase in conformational entropy of back‐folded OEG side chains upon aggregation that provides the pronounced gain in entropy that drives the aggregation process. Thus, our studies revealed that a subtle change in the attachment of solubilizing substituents can switch the thermodynamic signature for the self‐assembly of amphiphilic dyes in water from enthalpy‐ to entropy‐driven. KW - amphiphilic dyes KW - self-assembly KW - thermodynamics KW - OEG chains KW - π-conjugated systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218107 VL - 26 IS - 38 SP - 8426 EP - 8434 ER - TY - JOUR A1 - Grande, Vincenzo A1 - Soberats, Bartolome A1 - Herbst, Stefanie A1 - Stepanenko, Vladimir A1 - Würthner, Frank T1 - Hydrogen-bonded perylene bisimide J-aggregate aqua material N2 - A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60–95 wt% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30–50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water. KW - self-assembly KW - dyes KW - aqua material Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204715 UR - https://doi.org/10.1039/C8SC02409J SN - 2041-6539 VL - 9 ER - TY - JOUR A1 - Dostál, Jakub A1 - Fennel, Franziska A1 - Koch, Federico A1 - Herbst, Stefanie A1 - Würthner, Frank A1 - Brixner, Tobias T1 - Direct observation of exciton–exciton interactions JF - Nature Communications N2 - Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton–exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio–temporal dynamics for a broad range of phenomena in which exciton interactions are present. KW - energy transfer KW - self-assembly KW - optical spectroscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226271 VL - 9 ER -