TY - JOUR A1 - Rosales-Alvarez, Reyna Edith A1 - Rettkowski, Jasmin A1 - Herman, Josip Stefan A1 - Dumbović, Gabrijela A1 - Cabezas-Wallscheid, Nina A1 - Grün, Dominic T1 - VarID2 quantifies gene expression noise dynamics and unveils functional heterogeneity of ageing hematopoietic stem cells JF - Genome Biology N2 - Variability of gene expression due to stochasticity of transcription or variation of extrinsic signals, termed biological noise, is a potential driving force of cellular differentiation. Utilizing single-cell RNA-sequencing, we develop VarID2 for the quantification of biological noise at single-cell resolution. VarID2 reveals enhanced nuclear versus cytoplasmic noise, and distinct regulatory modes stratified by correlation between noise, expression, and chromatin accessibility. Noise levels are minimal in murine hematopoietic stem cells (HSCs) and increase during differentiation and ageing. Differential noise identifies myeloid-biased Dlk1+ long-term HSCs in aged mice with enhanced quiescence and self-renewal capacity. VarID2 reveals noise dynamics invisible to conventional single-cell transcriptome analysis. KW - gene expression noise KW - single-cell RNA sequencing KW - stem cell differentiation KW - cell sate variability KW - ageing KW - hematopoietic stem cells KW - machine learning KW - mathematical modeling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358042 VL - 24 ER - TY - JOUR A1 - Scognamiglio, Roberta A1 - Cabezas-Wallscheid, Nina A1 - Thier, Marc Christian A1 - Altamura, Sandro A1 - Reyes, Alejandro A1 - Prendergast, Áine M. A1 - Baumgärtner, Daniel A1 - Carnevalli, Larissa S. A1 - Atzberger, Ann A1 - Haas, Simon A1 - von Paleske, Lisa A1 - Boroviak, Thorsten A1 - Wörsdörfer, Philipp A1 - Essers, Marieke A. G. A1 - Kloz, Ulrich A1 - Eisenman, Robert N. A1 - Edenhofer, Frank A1 - Bertone, Paul A1 - Huber, Wolfgang A1 - van der Hoeven, Franciscus A1 - Smith, Austin A1 - Trumpp, Andreas T1 - Myc depletion induces a pluripotent dormant state mimicking diapause JF - Cell N2 - Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state. KW - hematopoietic stem cells KW - leukemia inhibitory factor KW - c-Myc KW - N-Myc KW - gene expression KW - embryonic stem cells KW - self-renewal KW - protein synthesis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190868 VL - 164 IS - 4 ER -