TY - JOUR A1 - Beierle, Felix A1 - Schobel, Johannes A1 - Vogel, Carsten A1 - Allgaier, Johannes A1 - Mulansky, Lena A1 - Haug, Fabian A1 - Haug, Julian A1 - Schlee, Winfried A1 - Holfelder, Marc A1 - Stach, Michael A1 - Schickler, Marc A1 - Baumeister, Harald A1 - Cohrdes, Caroline A1 - Deckert, Jürgen A1 - Deserno, Lorenz A1 - Edler, Johanna-Sophie A1 - Eichner, Felizitas A. A1 - Greger, Helmut A1 - Hein, Grit A1 - Heuschmann, Peter A1 - John, Dennis A1 - Kestler, Hans A. A1 - Krefting, Dagmar A1 - Langguth, Berthold A1 - Meybohm, Patrick A1 - Probst, Thomas A1 - Reichert, Manfred A1 - Romanos, Marcel A1 - Störk, Stefan A1 - Terhorst, Yannik A1 - Weiß, Martin A1 - Pryss, Rüdiger T1 - Corona Health — A Study- and Sensor-Based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic JF - International Journal of Environmental Research and Public Health N2 - Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July 2020) in eight languages and attracted 7290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures. KW - mobile health KW - ecological momentary assessment KW - digital phenotyping KW - longitudinal studies KW - mobile crowdsensing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242658 SN - 1660-4601 VL - 18 IS - 14 ER - TY - JOUR A1 - Schecklmann, Martin A1 - Giani, Anette A1 - Tupak, Sara A1 - Langguth, Berthold A1 - Raab, Vincent A1 - Polak, Thomas A1 - Varallyay, Csanad A1 - Harnisch, Wilma A1 - Herrmann, Martin J. A1 - Fallgatter, Andreas J. T1 - Functional Near-Infrared Spectroscopy to Probe State- and Trait-Like Conditions in Chronic Tinnitus: A Proof-of-Principle Study JF - Neural Plasticity N2 - Objective. Several neuroscience tools showed the involvement of auditory cortex in chronic tinnitus. In this proof-of-principle study we probed the capability of functional near-infrared spectroscopy (fNIRS) for the measurement of brain oxygenation in auditory cortex in dependence from chronic tinnitus and from intervention with transcranial magnetic stimulation. Methods. Twenty-three patients received continuous theta burst stimulation over the left primary auditory cortex in a randomized sham-controlled neuronavigated trial (verum = 12; placebo = 11). Before and after treatment, sound-evoked brain oxygenation in temporal areas was measured with fNIRS. Brain oxygenation was measured once in healthy controls (n = 12). Results. Sound-evoked activity in right temporal areas was increased in the patients in contrast to healthy controls. Left-sided temporal activity under the stimulated area changed over the course of the trial; high baseline oxygenation was reduced and vice versa. Conclusions. By demonstrating that rTMS interacts with auditory evoked brain activity, our results confirm earlier electrophysiological findings and indicate the sensitivity of fNIRS for detecting rTMS induced changes in brain activity. Moreover, our findings of trait-and state-related oxygenation changes indicate the potential of fNIRS for the investigation of tinnitus pathophysiology and treatment response. KW - transcranial magnetic stimulation KW - positron-emission-tomography KW - auditory cortex KW - FNIRS KW - RTMS KW - neural activity KW - FMRI KW - brain KW - activation KW - humans Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117801 SN - 1687-5443 IS - 894203 ER -