TY - JOUR A1 - Kimpel, Otilia A1 - Schindler, Paul A1 - Schmidt-Pennington, Laura A1 - Altieri, Barbara A1 - Megerle, Felix A1 - Haak, Harm A1 - Pittaway, James A1 - Dischinger, Ulrich A1 - Quinkler, Marcus A1 - Mai, Knut A1 - Kroiss, Matthias A1 - Polat, Bülent A1 - Fassnacht, Martin T1 - Efficacy and safety of radiation therapy in advanced adrenocortical carcinoma JF - British Journal of Cancer N2 - Background International guidelines emphasise the role of radiotherapy (RT) for the management of advanced adrenocortical carcinoma (ACC). However, the evidence for this recommendation is very low. Methods We retrospectively analysed all patients who received RT for advanced ACC in five European centres since 2000. Primary endpoint: time to progression of the treated lesion (tTTP). Secondary endpoints: best objective response, progression-free survival (PFS), overall survival (OS), adverse events, and the establishment of predictive factors by Cox analyses. Results In total, 132 tumoural lesions of 80 patients were treated with conventional RT (cRT) of 50–60 Gy (n = 20) or 20–49 Gy (n = 69), stereotactic body RT of 35–50 Gy (SBRT) (n = 36), or brachytherapy of 12–25 Gy (BT) (n = 7). Best objective lesional response was complete (n = 6), partial (n = 52), stable disease (n = 60), progressive disease (n = 14). Median tTTP was 7.6 months (1.0–148.6). In comparison to cRT\(_{20-49Gy}\), tTTP was significantly longer for cRT\(_{50-60Gy}\) (multivariate adjusted HR 0.10; 95% CI 0.03–0.33; p < 0.001) and SBRT (HR 0.31; 95% CI 0.12–0.80; p = 0.016), but not for BT (HR 0.66; 95% CI 0.22–1.99; p = 0.46). Toxicity was generally mild and moderate with three grade 3 events. No convincing predictive factors could be established. Conclusions This largest published study on RT in advanced ACC provides clear evidence that RT is effective in ACC. KW - adrenal tumours KW - adrenocortical carcinoma (ACC) KW - radiotherapy (RT) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324411 VL - 128 IS - 4 ER - TY - JOUR A1 - Shirakashi, Ryo A1 - Sisario, Dmitri A1 - Taban, Danush A1 - Korsa, Tessa A1 - Wanner, Sophia B. A1 - Neubauer, Julia A1 - Djuzenova, Cholpon S. A1 - Zimmermann, Heiko A1 - Sukhorukov, Vladimir L. T1 - Contraction of the rigor actomyosin complex drives bulk hemoglobin expulsion from hemolyzing erythrocytes JF - Biomechanics and Modeling in Mechanobiology N2 - Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux. KW - electroporation KW - cell velocimetry KW - hemoglobin jet KW - non-muscle myosin KW - echinocytes KW - cytoskeleton Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325107 VL - 22 IS - 2 ER - TY - JOUR A1 - Lisowski, Dominik A1 - Lutyj, Paul A1 - Abazari, Arya A1 - Weick, Stefan A1 - Traub, Jan A1 - Polat, Bülent A1 - Flentje, Michael A1 - Kraft, Johannes T1 - Impact of Radiotherapy on Malfunctions and Battery Life of Cardiac Implantable Electronic Devices in Cancer Patients JF - Cancers N2 - Purpose: This study analyses a large number of cancer patients with CIEDs for device malfunction and premature battery depletion by device interrogation after each radiotherapy fraction and compares different guidelines in regard to patient safety. Methods: From 2007 to 2022, a cohort of 255 patients was analyzed for CIED malfunctions via immediate device interrogation after every RT fraction. Results: Out of 324 series of radiotherapy treatments, with a total number of 5742 CIED interrogations, nine device malfunctions (2.8%) occurred. Switching into back-up/safety mode and software errors occurred four times each. Once, automatic read-out could not be performed. The median prescribed cumulative dose at planning target volume (PTV) associated with CIED malfunction was 45.0 Gy (IQR 36.0–64.0 Gy), with a median dose per fraction of 2.31 Gy (IQR 2.0–3.0 Gy). The median maximum dose at the CIED at time of malfunction was 0.3 Gy (IQR 0.0–1.3 Gy). No correlation between CIED malfunction and maximum photon energy (p = 0.07), maximum dose at the CIED (p = 0.59) nor treatment localization (p = 0.41) could be detected. After excluding the nine malfunctions, premature battery depletion was only observed three times (1.2%). Depending on the national guidelines, 1–9 CIED malfunctions in this study would have been detected on the day of occurrence and in none of the cases would patient safety have been compromised. Conclusion: Radiation-induced malfunctions of CIEDs and premature battery depletion are rare. If recommendations of national safety guidelines are followed, only a portion of the malfunctions would be detected directly after occurrence. Nevertheless, patient safety would not be compromised. KW - battery depletion KW - cardiac implantable electronic devices (CIED) KW - cardiac resynchronization therapy (CRT) KW - implantable cardioverter defibrillator (ICD) KW - CIED malfunction; pacemaker (PM) KW - radiotherapy (RT) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358008 SN - 2072-6694 VL - 15 IS - 19 ER - TY - JOUR A1 - Huflage, Henner A1 - Kunz, Andreas Steven A1 - Hendel, Robin A1 - Kraft, Johannes A1 - Weick, Stefan A1 - Razinskas, Gary A1 - Sauer, Stephanie Tina A1 - Pennig, Lenhard A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients JF - Diagnostics N2 - Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25–29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1%) compared with non-obese (0%) and pre-obese patients (4.1%). Conclusion: DECT facilitates a 30.8% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients. KW - dual-energy CT KW - dual-source CT KW - virtual non-contrast KW - radiation dose KW - spectral CT KW - obesity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313519 SN - 2075-4418 VL - 13 IS - 9 ER - TY - JOUR A1 - Lisowski, Dominik A1 - Hartrampf, Philipp E. A1 - Hasenauer, Natalie A1 - Nickl, Vera A1 - Monoranu, Camelia-Maria A1 - Tamihardja, Jörg T1 - Complete loss of E-cadherin expression in a rare case of metastatic malignant meningioma: a case report JF - BMC Neurology N2 - Background Hematogenous tumor spread of malignant meningiomas occurs very rarely but is associated with very poor prognosis. Case presentation We report an unusual case of a patient with a malignant meningioma who developed multiple metastases in bones, lungs and liver after initial complete resection of the primary tumor. After partial hepatic resection, specimens were histologically analyzed, and a complete loss of E-cadherin adhesion molecules was found. No oncogenic target mutations were found. The patient received a combination of conventional radiotherapy and peptide receptor radionuclide therapy (PRRT). Due to aggressive tumor behavior and rapid spread of metastases, the patient deceased after initiation of treatment. Conclusions E-cadherin downregulation is associated with a higher probability of tumor invasion and distant metastasis formation in malignant meningioma. Up to now, the efficacy of systemic therapy, including PRRT, is very limited in malignant meningioma patients. KW - beta-catenin KW - E-cadherin KW - meningioma KW - peptide receptor radionuclide therapy (PRRT) KW - radiotherapy Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357996 VL - 23 ER - TY - JOUR A1 - Klement, Rainer J. A1 - Popp, Ilinca A1 - Kaul, David A1 - Ehret, Felix A1 - Grosu, Anca L. A1 - Polat, Bülent A1 - Sweeney, Reinhart A. A1 - Lewitzki, Victor T1 - Accelerated hyper-versus normofractionated radiochemotherapy with temozolomide in patients with glioblastoma: a multicenter retrospective analysis JF - Journal of Neuro-Oncology N2 - Background and Purpose The standard treatment of glioblastoma patients consists of surgery followed by normofractionated radiotherapy (NFRT) with concomitant and adjuvant temozolomide chemotherapy. Whether accelerated hyperfractionated radiotherapy (HFRT) yields comparable results to NFRT in combination with temozolomide has only sparsely been investigated. The objective of this study was to compare NFRT with HFRT in a multicenter analysis. Materials and Methods A total of 484 glioblastoma patients from four centers were retrospectively pooled and analyzed. Three-hundred-ten and 174 patients had been treated with NFRT (30 × 1.8 Gy or 30 × 2 Gy) and HFRT (37 × 1.6 Gy or 30 × 1.8 Gy twice/day), respectively. The primary outcome of interest was overall survival (OS) which was correlated with patient-, tumor- and treatment-related variables via univariable and multivariable Cox frailty models. For multivariable modeling, missing covariates were imputed using multiple imputation by chained equations, and a sensitivity analysis was performed on the complete-cases-only dataset. Results After a median follow-up of 15.7 months (range 0.8-88.6 months), median OS was 16.9 months (15.0-18.7 months) in the NFRT group and 14.9 months (13.2-17.3 months) in the HFRT group (p = 0.26). In multivariable frailty regression, better performance status, gross-total versus not gross-total resection, MGMT hypermethylation, IDH mutation, smaller planning target volume and salvage therapy were significantly associated with longer OS (all p < 0.01). Treatment differences (HFRT versus NFRT) had no significant effect on OS in either univariable or multivariable analysis. Conclusions Since HFRT with temozolomide was not associated with worse OS, we assume HFRT to be a potential option for patients wishing to shorten their treatment time. KW - temozolomide KW - accelerated hyperfractionation KW - altered fractionation KW - glioblastoma KW - radiotherapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269806 SN - 1573-7373 VL - 156 IS - 2 ER - TY - JOUR A1 - Pollmann, Stephan A1 - Toussaint, André A1 - Flentje, Michael A1 - Wegener, Sonja A1 - Lewitzki, Victor T1 - Dosimetric evaluation of commercially available flat vs. self-produced 3D-conformal silicone boluses for the head and neck region JF - Frontiers in Oncology N2 - Background Boluses are routinely used in radiotherapy to modify surface doses. Nevertheless, considerable dose discrepancies may occur in some cases due to fit inaccuracy of commercially available standard flat boluses. Moreover, due to the simple geometric design of conventional boluses, also surrounding healthy skin areas may be unintentionally covered, resulting in the unwanted dose buildup. With the fused deposition modeling (FDM) technique, there is a simple and possibly cost-effective way to solve these problems in routine clinical practice. This paper presents a procedure of self-manufacturing bespoke patient-specific silicone boluses and the evaluation of buildup and fit accuracy in comparison to standard rectangular commercially available silicone boluses. Methods 3D-conformal silicone boluses were custom-built to cover the surgical scar region of 25 patients who received adjuvant radiotherapy of head and neck cancer at the University Hospital Würzburg. During a standard CT-based planning procedure, a 5-mm-thick 3D bolus contour was generated to cover the radiopaque marked surgical scar with an additional safety margin. From these digital contours, molds were 3D printed and poured with silicone. Dose measurements for both types of boluses were performed with radiochromic films (EBT3) at three points per patient—at least one aimed to be in the high-dose area (scar) and one in the lower-dose area (spared healthy skin). Surface–bolus distance, which ideally should not be present, was determined from cone-beam CT performed for positioning control. The dosimetric influence of surface–bolus distance was also determined on slab phantom for different field sizes. The trial was performed with hardware that may be routinely available in every radiotherapy department, with the exception of the 3D printer. The required number of patients was determined based on the results of preparatory measurements with the help of the statistical consultancy of the University of Würzburg. The number of measuring points represents the total number of patients. Results In the high-dose area of the scar, there was a significantly better intended dose buildup of 2.45% (95%CI 0.0014–0.0477, p = 0.038, N = 30) in favor of a 3D-conformal bolus. Median distances between the body surface and bolus differed significantly between 3D-conformal and commercially available boluses (3.5 vs. 7.9 mm, p = 0.001). The surface dose at the slab phantom did not differ between commercially available and 3D-conformal boluses. Increasing the surface–bolus distance from 5 to 10 mm decreased the surface dose by approximately 2% and 11% in the 6 × 6- and 3 × 3-cm2 fields, respectively. In comparison to the commercially available bolus, an unintended dose buildup in the healthy skin areas was reduced by 25.9% (95%CI 19.5–32.3, p < 0.01, N = 37) using the 3D-conformal bolus limited to the region surrounding the surgical scar. Conclusions Using 3D-conformal boluses allows a comparison to the commercially available boluses’ dose buildup in the covered areas. Smaller field size is prone to a larger surface–bolus distance effect. Higher conformity of 3D-conformal boluses reduces this effect. This may be especially relevant for volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques with a huge number of smaller fields. High conformity of 3D-conformal boluses reduces an unintended dose buildup in healthy skin. The limiting factor in the conformity of 3D-conformal boluses in our setting was the immobilization mask, which was produced primarily for the 3D boluses. The mask itself limited tight contact of subsequently produced 3D-conformal boluses to the mask-covered body areas. In this respect, bolus adjustment before mask fabrication will be done in the future setting. KW - flat silicone bolus KW - individual silicone bolus KW - 3D conformal silicone bolus KW - 3D printer KW - head and neck cancer KW - fused deposition modeling (FDM) KW - surface dose measurement KW - volumetric modulated arc therapy (VMAT) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283156 SN - 2234-943X VL - 12 ER - TY - JOUR A1 - Kraft, Johannes A1 - Weick, Stefan A1 - Breuer, Kathrin A1 - Lutyj, Paul A1 - Bratengeier, Klaus A1 - Exner, Florian A1 - Richter, Anne A1 - Tamihardja, Jörg A1 - Lisowski, Dominik A1 - Polat, Bülent A1 - Flentje, Michael T1 - Treatment plan comparison for irradiation of multiple brain metastases with hippocampal avoidance whole brain radiotherapy and simultaneous integrated boost using the Varian Halcyon and the Elekta Synergy platforms JF - Radiation Oncology N2 - No abstract available. KW - treatment plan KW - multiple brain metastases Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301221 VL - 17 ER - TY - JOUR A1 - Tamihardja, Jörg A1 - Zehner, Leonie A1 - Hartrampf, Philipp E. A1 - Cirsi, Sinan A1 - Wegener, Sonja A1 - Buck, Andreas K. A1 - Flentje, Michael A1 - Polat, Bülent T1 - Dose-escalated salvage radiotherapy for macroscopic local recurrence of prostate cancer in the prostate-specific membrane antigen positron emission tomography era JF - Cancers N2 - Simple Summary Prostate cancer often relapses after initial radical prostatectomy, and salvage radiotherapy offers a second chance of cure for relapsed patients. Modern imaging techniques, especially prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT), enable radiation oncologists to target radiotherapy at the involved sites of disease. In a group of patients, PSMA PET/CT imaging can detect a macroscopic local recurrence with or without locoregional lymph node metastasis. In these cases, an escalation of the radiotherapy dose is often considered for controlling the visible tumor mass. As the evidence for dose-escalated salvage radiotherapy for macroscopic recurrent prostate cancer after PSMA PET/CT imaging is still limited, we address this topic in the current analysis. We found that the outcome of patients with dose-escalated salvage radiotherapy for macroscopic prostate cancer recurrence is encouragingly favorable, while the toxicity is very limited. Abstract Background: The purpose of this study was to access the oncological outcome of prostate-specific membrane antigen positron emission tomography (PSMA PET/CT)-guided salvage radiotherapy (SRT) for localized macroscopic prostate cancer recurrence. Methods: Between February 2010 and June 2021, 367 patients received SRT after radical prostatectomy. Out of the 367 screened patients, 111 patients were staged by PSMA PET/CT before SRT. A total of 59 out of these 111 (53.2%) patients were treated for PSMA PET-positive macroscopic prostatic fossa recurrence. Dose-escalated SRT was applied with a simultaneous integrated boost at a median prescribed dose of 69.3 Gy (IQR 69.3–72.6 Gy). The oncological outcome was investigated using Kaplan-Meier and Cox regression analyses. The genitourinary (GU)/gastrointestinal (GI) toxicity evaluation utilized Common Toxicity Criteria for Adverse Events (version 5.0). Results: The median follow-up was 38.2 months. The three-year biochemical progression-free survival rate was 89.1% (95% CI: 81.1–97.8%) and the three-year metastasis-free survival rate reached 96.2% (95% CI: 91.2–100.0%). The cumulative three-year late grade 3 GU toxicity rate was 3.4%. No late grade 3 GI toxicity occurred. Conclusions: Dose-escalated PSMA PET/CT-guided salvage radiotherapy for macroscopic prostatic fossa recurrence resulted in favorable survival and toxicity rates. KW - prostate cancer KW - salvage radiotherapy KW - macroscopic recurrence KW - PSMA PET/CT KW - simultaneous integrated boost Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290302 SN - 2072-6694 VL - 14 IS - 19 ER - TY - JOUR A1 - Lisowski, Dominik A1 - Trömel, Jannik A1 - Lutyj, Paul A1 - Lewitzki, Victor A1 - Hartrampf, Philipp E. A1 - Polat, Bülent A1 - Flentje, Michael A1 - Tamihardja, Jörg T1 - Health-related quality of life and clinical outcome after radiotherapy of patients with intracranial meningioma JF - Scientific Reports N2 - This retrospective, single-institutional study investigated long-term outcome, toxicity and health-related quality of life (HRQoL) in meningioma patients after radiotherapy. We analyzed the data of 119 patients who received radiotherapy at our department from 1997 to 2014 for intracranial WHO grade I-III meningioma. Fractionated stereotactic radiotherapy (FSRT), intensity modulated radiotherapy (IMRT) or radiosurgery radiation was applied. The EORTC QLQ-C30 and QLQ-BN20 questionnaires were completed for assessment of HRQoL. Overall survival (OS) for the entire study group was 89.6% at 5 years and 75.9% at 10 years. Local control (LC) at 5 and 10 years was 82.4% and 73.4%, respectively. Local recurrence was observed in 22 patients (18.5%). Higher grade acute and chronic toxicities were observed in seven patients (5.9%) and five patients (4.2%), respectively. Global health status was rated with a mean of 59.9 points (SD 22.3) on QLQ-C30. In conclusion, radiotherapy resulted in very good long-term survival and tumor control rates with low rates of severe toxicities but with a deterioration of long-term HRQoL. KW - CNS cancer KW - outcomes research KW - radiotherapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301233 VL - 12 ER -