TY - JOUR A1 - Shukla, A. A1 - Mannheim, K. T1 - Gamma-ray flares from relativistic magnetic reconnection in the jet of the quasar 3C 279 JF - Nature Communications N2 - Spinning black holes in the centres of galaxies can release powerful magnetised jets. When the jets are observed at angles of less than a few degrees to the line-of-sight, they are called blazars, showing variable non-thermal emission across the electromagnetic spectrum from radio waves to gamma rays. It is commonly believed that shock waves are responsible for this dissipation of jet energy. Here we show that gamma-ray observations of the blazar 3C 279 with the space-borne telescope Fermi-LAT reveal a characteristic peak-in-peak variability pattern on time scales of minutes expected if the particle acceleration is instead due to relativistic magnetic reconnection. The absence of gamma-ray pair attenuation shows that particle acceleration takes place at a distance of ten thousand gravitational radii from the black hole where the fluid dynamical kink instability drives plasma turbulence. KW - kink instability KW - energy KW - radiation KW - blazars KW - variability KW - absorption KW - telescope KW - shocks Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231328 VL - 11 ER - TY - JOUR A1 - Adrián-Martínez, S. A1 - Ageron, M. A1 - Aharonian, F. A1 - Aiello, S. A1 - Albert, A. A1 - Ameli, F. A1 - Annasontzis, E. A1 - Andre, M. A1 - Androulakis, G. A1 - Anghinolfi, M. A1 - Anton, G. A1 - Ardid, M. A1 - Avgitas, T. A1 - Barbarino, G. A1 - Baret, B. A1 - Barrios-Martí, J. A1 - Belhorma, B. A1 - Belias, A. A1 - Berbee, A. A1 - van den Berg, A. A1 - Bertin, V. A1 - Beurthey, S. A1 - van Beeveren, V. A1 - Beverini, N. A1 - Biagi, S. A1 - Biagioni, A. A1 - Billault, M. A1 - Bondì, M. A1 - Bormuth, R. A1 - Bouhadef, B. A1 - Bourlis, G. A1 - Bourret, S. A1 - Boutonnet, C. A1 - Bouwhuis, M. A1 - Bozza, C. A1 - Bruijn, R. A1 - Brunner, J. A1 - Buis, E. A1 - Busto, J. A1 - Cacopardo, G. A1 - Caillat, L. A1 - Calmai, M. A1 - Calvo, D. A1 - Capone, A. A1 - Caramete, L. A1 - Cecchini, S. A1 - Celli, S. A1 - Champion, C. A1 - Cherkaoui El Moursli, R. A1 - Cherubini, S. A1 - Chiarusi, T. A1 - Circella, M. A1 - Classen, L. A1 - Cocimano, R. A1 - Coelho, J. A. B. A1 - Coleiro, A. A1 - Colonges, S. A1 - Coniglione, R. A1 - Cordelli, M. A1 - Cosquer, A. A1 - Coyle, P. A1 - Creusot, A. A1 - Cuttone, G. A1 - D'Amico, A. A1 - De Bonis, G. A1 - De Rosa, G. A1 - De Sio, C. A1 - Di Capua, F. A1 - Di Palma, I. A1 - Díaz García, A. F. A1 - Distefano, C. A1 - Donzaud, C. A1 - Dornic, D. A1 - Dorosti-Hasankiadeh, Q. A1 - Drakopoulou, E. A1 - Drouhin, D. A1 - Drury, L. A1 - Durocher, M. A1 - Eberl, T. A1 - Eichie, S. A1 - van Eijk, D. A1 - El Bojaddaini, I. A1 - El Khayati, N. A1 - Elsaesser, D. A1 - Enzenhöfer, A. A1 - Fassi, F. A1 - Favali, P. A1 - Fermani, P. A1 - Ferrara, G. A1 - Filippidis, C. A1 - Frascadore, G. A1 - Fusco, L. A. A1 - Gal, T. A1 - Galatà, S. A1 - Garufi, F. A1 - Gay, P. A1 - Gebyehu, M. A1 - Giordano, V. A1 - Gizani, N. A1 - Gracia, R. A1 - Graf, K. A1 - Grégoire, T. A1 - Grella, G. A1 - Habel, R. A1 - Hallmann, S. A1 - van Haren, H. A1 - Harissopulos, S. A1 - Heid, T. A1 - Heijboer, A. A1 - Heine, E. A1 - Henry, S. A1 - Hernández-Rey, J. J. A1 - Hevinga, M. A1 - Hofestädt, J. A1 - Hugon, C. M. F. A1 - Illuminati, G. A1 - James, C. W. A1 - Jansweijer, P. A1 - Jongen, M. A1 - de Jong, M. A1 - Kadler, M. A1 - Kalekin, O. A1 - Kappes, A. A1 - Katz, U. F. A1 - Keller, P. A1 - Kieft, G. A1 - Kießling, D. A1 - Koffeman, E. N. A1 - Kooijman, P. A1 - Kouchner, A. A1 - Kulikovskiy, V. A1 - Lahmann, R. A1 - Lamare, P. A1 - Leisos, A. A1 - Leonora, E. A1 - Lindsey Clark, M. A1 - Liolios, A. A1 - Llorenz Alvarez, C. D. A1 - Lo Presti, D. A1 - Löhner, H. A1 - Lonardo, A. A1 - Lotze, M. A1 - Loucatos, S. A1 - Maccioni, E. A1 - Mannheim, K. A1 - Margiotta, A. A1 - Marinelli, A. A1 - Mariş, O. A1 - Markou, C. A1 - Martínez-Mora, J. A. A1 - Martini, A. A1 - Mele, R. A1 - Melis, K. W. A1 - Michael, T. A1 - Migliozzi, P. A1 - Migneco, E. A1 - Mijakowski, P. A1 - Miraglia, A. A1 - Mollo, C. M. A1 - Mongelli, M. A1 - Morganti, M. A1 - Moussa, A. A1 - Musico, P. A1 - Musumeci, M. A1 - Navas, S. A1 - Nicoleau, C. A. A1 - Olcina, I. A1 - Olivetto, C. A1 - Orlando, A. A1 - Papaikonomou, A. A1 - Papaleo, R. A1 - Păvălaş, G. E. A1 - Peek, H. A1 - Pellegrino, C. A1 - Perrina, C. A1 - Pfutzner, M. A1 - Piattelli, P. A1 - Pikounis, K. A1 - Poma, G. E. A1 - Popa, V. A1 - Pradier, T. A1 - Pratolongo, F. A1 - Pühlhofer, G. A1 - Pulvirenti, S. A1 - Quinn, L. A1 - Racca, C. A1 - Raffaelli, F. A1 - Randazzo, N. A1 - Rapidis, P. A1 - Razis, P. A1 - Real, D. A1 - Resvanis, L. A1 - Reubelt, J. A1 - Riccobene, G. A1 - Rossi, C. A1 - Rovelli, A. A1 - Saldaña, M. A1 - Salvadori, I. A1 - Samtleben, D. F. E. A1 - Sánchez García, A. A1 - Sánchez Losa, A. A1 - Sanguineti, M. A1 - Santangelo, A. A1 - Santonocito, D. A1 - Sapienza, P. A1 - Schimmel, F. A1 - Schmelling, J. A1 - Sciacca, V. A1 - Sedita, M. A1 - Seitz, T. A1 - Sgura, I. A1 - Simeone, F. A1 - Siotis, I. A1 - Sipala, V. A1 - Spisso, B. A1 - Spurio, M. A1 - Stavropoulos, G. A1 - Steijger, J. A1 - Stellacci, S. M. A1 - Stransky, D. A1 - Taiuti, M. A1 - Tayalati, Y. A1 - Tézier, D. A1 - Theraube, S. A1 - Thompson, L. A1 - Timmer, P. A1 - Tönnis, C. A1 - Trasatti, L. A1 - Trovato, A. A1 - Tsirigotis, A. A1 - Tzamarias, S. A1 - Tzamariudaki, E. A1 - Vallage, B. A1 - Van Elewyk, V. A1 - Vermeulen, J. A1 - Vicini, P. A1 - Viola, S. A1 - Vivolo, D. A1 - Volkert, M. A1 - Voulgaris, G. A1 - Wiggers, L. A1 - Wilms, J. A1 - de Wolf, E. A1 - Zachariadou, K. A1 - Zornoza, J. D. A1 - Zúñiga, J. T1 - Letter of intent for KM3NeT 2.0 JF - Journal of Physics G-Nuclear and Particle Physics N2 - The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and KW - neutrino astronomy KW - eutrino physics KW - deep sea neutrino telescope KW - neutrino mass hierarchy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188050 VL - 43 IS - 8 ER -