TY - JOUR A1 - Tylek, Tina A1 - Blum, Carina A1 - Hrynevich, Andrei A1 - Schlegelmilch, Katrin A1 - Schilling, Tatjana A1 - Dalton, Paul D A1 - Groll, Jürgen T1 - Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages JF - Biofabrication N2 - Macrophages are key players of the innate immune system that can roughly be divided into the pro-inflammatory M1 type and the anti-inflammatory, pro-healing M2 type. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates a proper healing and subsequent regeneration. One promising strategy to drive macrophage polarization by biomaterials is precise control over biomaterial geometry. For regenerative approaches, it is of particular interest to identify geometrical parameters that direct human macrophage polarization. For this purpose, we advanced melt electrowriting (MEW) towards the fabrication of fibrous scaffolds with box-shaped pores and precise inter-fiber spacing from 100 μm down to only 40 μm. These scaffolds facilitate primary human macrophage elongation accompanied by differentiation towards the M2 type, which was most pronounced for the smallest pore size of 40 μm. These new findings can be important in helping to design new biomaterials with an enhanced positive impact on tissue regeneration. KW - cell elongation KW - human macrophages KW - melt electrowriting (MEW) KW - macrophage polarization KW - 3D scaffolds Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254012 VL - 12 IS - 2 ER - TY - JOUR A1 - Hochleitner, Gernot A1 - Jüngst, Tomasz A1 - Brown, Toby D A1 - Hahn, Kathrin A1 - Moseke, Claus A1 - Jakob, Franz A1 - Dalton, Paul D A1 - Groll, Jürgen T1 - Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing JF - Biofabrication N2 - The aim of this study was to explore the lower resolution limits of an electrohydrodynamic process combined with direct writing technology of polymer melts. Termed melt electrospinning writing, filaments are deposited layer-by-layer to produce discrete three-dimensional scaffolds for in vitro research. Through optimization of the parameters (flow rate, spinneret diameter, voltage, collector distance) for poly-ϵ-caprolactone, we could direct-write coherent scaffolds with ultrafine filaments, the smallest being 817 ± 165 nm. These low diameter filaments were deposited to form box-structures with a periodicity of 100.6 ± 5.1 μm and a height of 80 μm (50 stacked filaments; 100 overlap at intersections). We also observed oriented crystalline regions within such ultrafine filaments after annealing at 55 °C. The scaffolds were printed upon NCO-sP(EO-stat-PO)-coated glass slide surfaces and withstood frequent liquid exchanges with negligible scaffold detachment for at least 10 days in vitro. KW - additive manufacturing KW - 3D printing KW - biodegradable polymers KW - microstructures KW - nanostructures Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254053 VL - 7 IS - 3 ER -