TY - JOUR A1 - Thölken, Clemens A1 - Thamm, Markus A1 - Erbacher, Christoph A1 - Lechner, Marcus T1 - Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera) JF - BMC Genomics N2 - Background The honeybee (Apis mellifera) represents a model organism for social insects displaying behavioral plasticity. This is reflected by an age-dependent task allocation. The most protruding tasks are performed by young nurse bees and older forager bees that take care of the brood inside the hive and collect food from outside the hive, respectively. The molecular mechanism leading to the transition from nurse bees to foragers is currently under intense research. Circular RNAs, however, were not considered in this context so far. As of today, this group of non-coding RNAs was only known to exist in two other insects, Drosophila melanogaster and Bombyx mori. Here we complement the state of circular RNA research with the first characterization in a social insect. Results We identified numerous circular RNAs in the brain of A. mellifera nurse bees and forager bees using RNA-Seq with exonuclease enrichment. Presence and circularity were verified for the most abundant representatives. Back-splicing in honeybee occurs further towards the end of transcripts and in transcripts with a high number of exons. The occurrence of circularized exons is correlated with length and CpG-content of their flanking introns. The latter coincides with increased DNA-methylation in the respective loci. For two prominent circular RNAs the abundance in worker bee brains was quantified in TaqMan assays. In line with previous findings of circular RNAs in Drosophila, circAmrsmep2 accumulates with increasing age of the insect. In contrast, the levels of circAmrad appear age-independent and correlate with the bee's task. Its parental gene is related to amnesia-resistant memory. Conclusions We provide the first characterization of circRNAs in a social insect. Many of the RNAs identified here show homologies to circular RNAs found in Drosophila and Bombyx, indicating that circular RNAs are a common feature among insects. We find that exon circularization is correlated to DNA-methylation at the flanking introns. The levels of circAmrad suggest a task-dependent abundance that is decoupled from age. Moreover, a GO term analysis shows an enrichment of task-related functions. We conclude that circular RNAs could be relevant for task allocation in honeybee and should be investigated further in this context. KW - circRNA KW - circular transcriptome sequencing KW - honeybee KW - brain KW - neuronal KW - Methylation KW - CpG KW - alternative splicing KW - behavioral plasticity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241302 VL - 20 ER - TY - THES A1 - Ramirez Pineda, José Robinson T1 - Dendritic cells activated by CpG motifs are potent inducers of a Th1 immune response that protects mice against leishmaniasis T1 - CpG-aktivierte dendritische-Zellen induzieren eine Th1 immunantwort die Mäuse gegen Leishmaniose schütz N2 - The present investigation report a protocol to obtain dendritic cells (DC) that protects mice against fatal leishmaniasis. DC were generated from bone marrow precursors, pulsed with leishmanial antigen and activated with CpG oligodeoxinucleotides. Mice that were vaccinated with these cells were strongly protected against the clinical and parasitological manifestations of leishmaniasis and developed a Th1 immune response. protection was solid and long-lasting, and was also dependent of the via of administration. Whe the mechanism of protection was studied, it was observed that the availability of the cytokine interleukin-12 at the time of vaccination was a key requirement, but that the source of this cytokine is not the donor cells but unidentified cells from the recipients. N2 - En esta tesis se reporta un prtocolo para obtener celulas dendriticas (CD) que inducen una respuesta protectora contra la leishmaniasis en ratones susceptibles. Las CD se generaron de precursores de medula osea, se pulsaron con antigeno de Leishmania y se activaron con oligonucleotidos que contienen motivos CpG. Cuando los ratones se vacunan con estas celulas se observa una fuerte proteccion clinica y parasitologica contra la leishmaniasis. Los ratones se protegen debido a que desarrollan una respuesta inmune de tipo Th1, en contraste con la respuesta Th2 desarrollada por los ratones control. La proteccion fue solida y duradera y fue dependiente de la via de administracion de las CD. Cuando se estudio el mecanismo de proteccion, se encontro que se requiere la presencia de la citokina interleukina 12 en el momento de la vacunacion, y que la fuente de esta citokina no son las celulas donadoras, sino celulas de los ratones recipientes. KW - Leishmaniose KW - Dendritische Zelle KW - Immunreaktion KW - Dendrtitischer Zellen KW - Th1 immunantwort KW - leishmaniose KW - CpG KW - Dendritic cells KW - Th1 response KW - leishmaniasis KW - CpG Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8410 ER -