TY - THES A1 - Ehebauer, Franziska T1 - Regulation of Nicotinamide N-methyltransferase Expression in Adipocytes T1 - Regulation der Nicotinamide N-methyltransferase Expression in Adipozyten N2 - Nicotinamide N-methyltransferase (NNMT) is a new regulator of energy homeostasis. Its expression is increased in models of obesity and diabetes. An enhanced NNMT level is also caused by an adipose tissue-specific knockout of glucose transporter type 4 (GLUT4) in mice, whereas the overexpression of this glucose transporter reduced the NNMT expression. Furthermore, the knockdown of the enzyme prevents mice from diet-induced obesity (DIO) and the recently developed small molecule inhibitors for NNMT reverses the DIO. These previous findings demonstrated the exclusive role of NNMT in adipose tissue and further make it to a promising target in obesity treatment. However, the regulation mechanism of this methyltransferase is not yet clarified. The first part of the thesis focus on the investigation whether pro-inflammatory signals are responsible for the enhanced NNMT expression in obese adipose tissue because a hallmark of this tissue is a low-level chronic inflammation. Indeed, the NNMT mRNA in our study was elevated in obese patients compared with the control group, whereas the GLUT4 mRNA expression does not differ between lean and obese humans. To analyze whether pro inflammatory signals, like interleukin (IL 6) and tumor necrosis factor α (TNF-α), regulate NNMT expression 3T3-L1 adipocytes were treated with these cytokines. However, IL 6, TNF α, and leptin, which is an alternative activator of the JAK/STAT pathway, did not affect the NNMT protein or mRNA level in differentiated 3T3-L1 adipocytes. The mRNA and protein levels were measured by quantitative polymerase chain reaction (qPCR) and western blotting. In the second part of this study, 3T3-L1 adipocytes were cultivated with varying glucose concentrations to show whether NNMT expression depends on glucose availability. Further studies with activators and inhibitors of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) signaling pathways were used to elucidate the regulation mechanism of the enzyme. The glucose deprivation of differentiated 3T3-L1 adipocytes led to a 2-fold increase in NNMT expression. This effect was confirmed by the inhibition of the glucose transports with phloretin as well as the inhibition of glycolysis with 2-deoxyglucose (2-DG). AMPK serves as an intracellular energy sensor and the pharmacological activation of it enhanced the NNMT expression. This increase was also caused by the inhibition of mTOR. Conversely, the activation of mTOR using MHY1485 prevented the effect of glucose deprivation on NNMT. Furthermore, the NNMT up-regulation was also blocked by the different autophagy inhibitors. Taken together, NNMT plays a critical role in autophagy in adipocytes, because an inhibition of this process prevented the augmented NNMT expression during glucose starvation. Moreover, the effect on NNMT protein and mRNA level depends on AMPK and mTOR. However, pro-inflammatory signals did not affect the expression. Further in vivo studies have to clarify whether AMPK activation and mTOR inhibition as well as autophagy are responsible for the increased NNMT levels in obese adipose tissue. In future this methyltransferase emerges as an awesome therapeutic target for obesity. N2 - NNMT ist ein neuer Regler der Energiehomöostase. Seine Expression ist in Adipositas- und Diabetesmodellorgansimen erhöht. Ein verstärktes NNMT Level wird auch durch einen fettgewebs-spezifischen GLUT4 Knockout in Mäusen hervorgerufen, wobei die Überexpression des Glukosetransporters die NNMT Expression reduziert. Des Weiteren schützt der Knockdown von NNMT die Mäuse vor Diät-induzierter Adipositas und die kürzlich entwickelten kleinen Molekülinhibitoren gegen NNMT kehren eine durch die Ernährung bedingte Adipositas wieder um. Neuere Erkenntnisse zeigen die exklusive Rolle von NNMT im Fettgewebe auf und machen das Enzym so zu einem vielversprechenden Target für die Adipositastherapie. Jedoch ist der Regulationsmechanismus dieser Methyltransferase noch nicht geklärt. Der erste Teil der Arbeit befasst sich mit der Untersuchung, ob pro-inflammatorische Signale verantwortlich sind für die erhöhten NNMT Expression im adipösen Fettgewebe, da sich dieses Gewebe durch eine chronische Inflammation auszeichnet. Tatsächlich war die mRNA in unserer Studie verstärkt exprimiert in adipösen Patienten im Vergleich zur Kontrollgruppe, wobei die GLUT4 mRNA Expression zwischen Schlanken und Adipösen nicht verändert war. Um zu untersuchen, ob pro-inflammatorische Signale, wie IL 6 und TNF α, die NNMT Expression regulieren, wurden 3T3-L1 Adipozyten mit diesen Zytokinen behandelt. Jedoch beeinflussten IL 6, TNF α und Leptin, welches ein weiterer Aktivator des JAK/STAT Signalweges ist, NNMT Protein oder mRNA Level in differenzierten 3T3 L1 Adipozyten nicht. Die mRNA und Protein Level wurden mittels qPCR und Western Blot analysiert. Im zweiten Teil dieser Studie wurden 3T3 L1 Adipozyten mit unterschiedlichen Glukosekonzentrationen kultiviert, um zu zeigen, ob die NNMT Expression von der Glukoseverfügbarkeit abhängig ist. Für die Untersuchung des genauen Regulationsmechanismus von NNMT, wurden weitere Studien mit Aktivatoren und Inhibitoren der AMPK und mTOR Signalwege durchgeführt. Der Glukosemangel führte zu einem 2-fachen Anstieg der NNMT Expression in differenzierten 3T3-L1 Adipozyten. Dieser Effekt wurde bestätigt durch die Inhibierung der Glukosetransporter mit Phloretin sowie durch die Inhibierung der Glykolyse mit 2-DG. AMPK ist ein intrazellulärer Energiesensor und dessen pharmakologische Aktvierung erhöhte die NNMT Expression. Dieser Anstieg wurde auch verursacht durch die Inhibierung von mTOR. Hingegen verhinderte die Aktivierung von mTOR mithilfe von MHY1485 den Effekt auf NNMT während des Glukoseentzugs. Des Weiteren wurde die Auswirkungen auf NNMT durch Autophagieinhibitoren unterbunden. Zusammenfassend spielt NNMT eine kritische Rolle für die Autophagie in Adipozyten, da eine Inhibierung des Prozesses die erhöhte NNMT Expression während eines Glukoseentzugs verhinderte. Darüber hinaus ist der Effekt auf die NNMT Protein und mRNA Level abhängig von AMPK and mTOR. Jedoch beeinflussten pro-inflammatorische Signale die Expression nicht. Weitere in vivo Studien müssen klären, ob eine AMPK Aktivierung und eine mTOR Inhibierung sowie die Autophagie in Adipozyten verantwortlich sind für die verstärkte NNMT Expression im adipösen Fettgewebe. Zukünftig wird sich NNMT als ein beeindruckendes Target für die Adipositastherapie herausstellen. KW - Fettzelle KW - Fettsucht KW - Methyltransferase KW - NNMT KW - adipocytes KW - mTOR KW - AMPK KW - autophagy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217645 ER - TY - THES A1 - Le Blanc Soto, Solange T1 - Role of FGF signaling in the adipogenic and osteogenic differentiation of human bone marrow stromal cells in a three-dimensional \(in\) \(vitro\) model T1 - Rolle der FGF-Signalgebung bei der adipogenen und osteogenen Differenzierung von humanen Knochenmarkstromazellen in einem dreidimensionalen \(in\) \(vitro\) Modell N2 - Adult human skeletal stem cells are considered to give rise to the bone marrow stromal compartment, including bone-forming osteoblasts and marrow adipocytes. Reduced osteogenesis and enhanced adipogenesis of these skeletal progenitors may contribute to the bone loss and marrow fat accumulation observed during aging and osteoporosis, the main disorder of bone remodeling. Concordantly, in vitro evidence indicates that adipogenic and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) display an inverse relationship under numerous conditions. Hence, the identification of factors modulating inversely both differentiation pathways is of great therapeutic interest. Based on mRNA expression analysis of inversely regulated genes after switching differentiation conditions, our group had previously proposed that fibroblast growth factor 1 (FGF1) might play such a modulator role in hBMSC differentiation. The main aim of this work was, therefore, to investigate the role of FGF1 signaling in the adipogenic and osteogenic differentiation of hBMSCs using a three-dimensional (3D) culture system based on collagen type I hydrogels in order to better mimic the natural microenvironment. Adipogenic and osteogenic differentiation of hBMSCs embedded in collagen gels was successfully established. Treatment with recombinant human FGF1 (rhFGF1), as well as rhFGF2, throughout differentiation induction was found to exert a dose-dependent inhibitory effect on adipogenesis in hBMSCs. This inhibitory effect was found to be reversible and dependent on FGF receptors (FGFR) signaling, given that simultaneous pharmacological blockage of FGFRs rescued adipogenic differentiation. Additionally, matrix mineralization under osteogenic induction was also inhibited by rhFGF1 and rhFGF2 in a dose-dependent manner. A transient treatment with rhFGF1 and rhFGF2 during an expansion phase, however, enhanced proliferation of hBMSCs without affecting the differentiation capacity, although matrix mineralization under osteogenic conditions was hindered. Additionally, rhFGF1 and rhFGF2 treatments affected the matrix remodeling ability of hBMSCs, which displayed alterations in the cytoskeletal phenotype and the expression patterns of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). On the other hand, inhibition of FGFR signaling throughout differentiation induction elicited a strong enhancement of matrix mineralization under osteogenic conditions but had no significant effect on adipocyte formation under adipogenic induction. IX In conclusion, FGF1 and FGF2 signaling was found to support the expansion of bone marrow stromal precursors with adipogenic and osteogenic capacities, to hinder adipogenic and osteogenic differentiation if continuously present during differentiation induction and to alter the matrix remodeling ability of hBMSCs within a 3D collagenous microenvironment. N2 - Es wird angenommen, dass humane adulte skelettale Stammzellen das Knochenmarkstroma, einschliesslich der knochenbildenden Osteoblasten und den Knochenmark-Adipozyten bilden. Eine verringerte Osteogenese und eine erhöhte Adipogenese dieser skelettalen Vorläufer kann zu einem Knochenverlust und zu einer Verfettung des Knochenmarks beitragen, was während der Alterung und der Osteoporose, der Hauptstörung des Knochenumbaus, beobachtet wird. Übereinstimmend dazu konnte in einem in vitro Nachweis gezeigt werden, dass sich die adipogene und osteogene Differenzierung von humanen Knochenmarkstromazellen (hBMSCs) unter einer Vielzahl von Bedingungen invers verhält. Somit ist die Identifikation von Faktoren, welche beide Differenzierungssignalwege invers regulieren, von großem therapeutischem Interesse. Basierend auf mRNA Expressionsanalysen von Genen, die nach Änderung der Differenzierungsbedingungen invers reguliert wurden, hat unsere Gruppe bereits seit längerem angenommen, dass der Fibroblasten-Wachstumsfaktor 1 (FGF1) eine solche Regulatorfunktion in der hBMSC Differenzierung einnehmen könnte. Das Hauptziel dieser Arbeit war deshalb die Rolle der FGF1 Signalgebung in der adipogenen und osteogenen Differenzierung von hBMSCs zu untersuchen. Dies erfolgte unter Einsatz von einem dreidimensionalen (3D) Kultursystem basierend auf Kollagen-Typ I-Hydrogelen um die natürliche Mikroumgebung besser imitieren zu können. Die adipogene und osteogene Differenzierung von in Kollagengelen eingebetteten hBMSCs konnte erfolgreich etabliert werden. Die Behandlung mit rekombinantem humanen FGF1 (rhFGF1), sowie mit rhFGF2, während der Differenzierungsinduktion führte zu einem dosisabhängigen hemmenden Effekt auf die Adipogenese in den hBMSCs. Dieser inhibierende Effekt ist reversibel und abhängig von Signalgebung der FGF Rezeptoren (FGFRs), da die gleichzeitige pharmakologische Blockierung von FGFRs die adipogene Differenzierung wiederhergestellt hatte. Zusätzlich wurde auch die Matrixmineralisierung durch rhFGF1 und rhFGF2 Gabe während der osteogenen Induktion in dosisabhängiger Weise inhibiert. Eine vorrübergehende Behandlung mit rhFGF1 und rhFGF2 während der Expansionsphase jedoch erhöhte die Proliferation von hBMSCs ohne die Differenzierungskapazität zu beeinflussen, obwohl die Matrixmineralisierung unter osteogenen Bedingungen verhindert wurde. Zudem beinflussten die Behandlungen mit rhFGF1 und rhFGF2 die Fähigkeit von hBMSCs die Matrix umzubauen, was sich durch phänotypische Veränderungen des Zytoskeletts und in einem veränderten Expressionsmuster von Metalloproteinasen (MMPs) und Gewebeinhibitoren von Metalloproteinasen (TIMPs) zeigte. XI Andererseits löste die Inhibition der FGFR Signalgebung während der Differenzierungsinduktion eine deutliche Zunahme der Matrixmineralisierung unter osteogenen Bedingungen aus, zeigte aber keinen signifikanten Effekt auf die Bildung von Adipozyten bei adipogener Induktion. Zusammenfassend lässt sich sagen, dass die FGF1 und FGF2 Signalgebung die Expansion von Vorläufern des Knochenmarkstroma mit adipogenen und osteogenen Kapazitäten unterstützt, deren Differenzierung hemmt bei kontinuierlicher Gabe während der Differenzierungsinduktion gegeben wird und die Fähigkeit des Matrixumbaus von hBMSCs innerhalb einer kollagenen 3D Mikroumgebung verändert. KW - Bone marrow stromal cell KW - Adipogenesis KW - Osteogenesis KW - Collagen gels KW - Fettzelle KW - Knochenbildung KW - Knochenmarkzelle KW - Fibroblastenwachstumsfaktor Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147659 ER - TY - THES A1 - Simann, Meike T1 - Aufklärung der Effekte von Fibroblasten-Wachstumsfaktor 1 und 2 auf die Adipogenese und Osteogenese von primären humanen Knochenmark-Stroma-Zellen T1 - Elucidation of fibroblast growth factor 1 and 2 effects on the adipogenesis and osteogenesis of primary human bone marrow stromal cells N2 - Regulating and reverting the adipo-osteogenic lineage decision of trabecular human bone marrow stromal cells (hBMSCs) represents a promising approach for osteoporosis therapy and prevention. Fibroblast growth factor 1 (FGF1) and its subfamily member FGF2 were scored as lead candidates to exercise control over lineage switching processes (conversion) in favor of osteogenesis previously. However, their impact on differentiation events is controversially discussed in literature. Hence, the present study aimed to investigate the effects of these FGFs on the adipogenic and osteogenic differentiation and conversion of primary hBMSCs. Moreover, involved downstream signaling mechanisms should be elucidated and, finally, the results should be evaluated with regard to the possible therapeutic approach. This study clearly revealed that culture in the presence of FGF1 strongly prevented the adipogenic differentiation of hBMSCs as well as the adipogenic conversion of pre-differentiated osteoblastic cells. Lipid droplet formation was completely inhibited by a concentration of 25 ng/µL. Meanwhile, the expression of genetic markers for adipogenic initiation, peroxisome proliferator-activated receptor gamma 2 (PPARg2) and CCAAT/enhancer binding protein alpha (C/EBPa), as well as subsequent adipocyte maturation, fatty acid binding protein 4 (FABP4) and lipoprotein lipase (LPL), were significantly downregulated. Yet, the genetic markers of osteogenic commitment and differentiation were not upregulated during adipogenic differentiation and conversion under FGF supplementation, not supporting an event of osteogenic lineage switching. Moreover, when examining the effects on the osteogenic differentiation of hBMSCs and the osteogenic conversion of pre-differentiated adipocytic cells, culture in the presence of FGF1 markedly decreased extracellular matrix (ECM) mineralization. Additionally, the gene expression of the osteogenic marker alkaline phosphatase (ALP) was significantly reduced and ALP enzyme activity was decreased. Furthermore, genetic markers of osteogenic commitment, like the master regulator runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 4 (BMP4), as well as markers of osteogenic differentiation and ECM formation, like collagen 1 A1 (COL1A1) and integrin-binding sialoprotein (IBSP), were downregulated. In contrast, genes known to inhibit ECM mineralization, like ANKH inorganic pyrophosphate transport regulator (ANKH) and osteopontin (OPN), were upregulated. ANKH inhibition revealed that its transcriptional elevation was not crucial for the reduced matrix mineralization, perhaps due to decreased expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) that likely annulled ANKH upregulation. Like FGF1, also the culture in the presence of FGF2 displayed a marked anti-adipogenic and anti-osteogenic effect. The FGF receptor 1 (FGFR1) was found to be crucial for mediating the described FGF effects in adipogenic and osteogenic differentiation and conversion. Yet, adipogenic conversion displayed a lower involvement of the FGFR1. For adipogenic differentiation and osteogenic differentiation/conversion, downstream signal transduction involved the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the mitogen-activated protein kinase (MAPK)/ERK kinases 1 and 2 (MEK1/2), probably via the phosphorylation of FGFR docking protein FGFR substrate 2a (FRS2a) and its effector Ras/MAPK. The c-Jun N-terminal kinase (JNK), p38-MAPK, and protein kinase C (PKC) were not crucial for the signal transduction, yet were in part responsible for the rate of adipogenic and/or osteogenic differentiation itself, in line with current literature. Taken together, to the best of our knowledge, our study was the first to describe the strong impact of FGF1 and FGF2 on both the adipogenic and osteogenic differentiation and conversion processes of primary hBMSCs in parallel. It clearly revealed that although both FGFs were not able to promote the differentiation and lineage switching towards the osteogenic fate, they strongly prevented adipogenic differentiation and lineage switching, which seem to be elevated during osteoporosis. Our findings indicate that FGF1 and FGF2 entrapped hBMSCs in a pre-committed state. In conclusion, these agents could be applied to potently prevent unwanted adipogenesis in vitro. Moreover, our results might aid in unraveling a pharmacological control point to eliminate the increased adipogenic differentiation and conversion as potential cause of adipose tissue accumulation and decreased osteoblastogenesis in bone marrow during aging and especially in osteoporosis. N2 - Die Regulation und Umkehr des adipogenen und osteogenen Commitments von trabekulären humanen Knochenmarks-Stroma Zellen (hBMSCs) stellt einen vielversprechenden Ansatz für die Prävention und Therapie der Knochenerkrankung Osteoporose dar. Der Fibroblasten-Wachstumsfaktor 1 (FGF1) und sein Proteinfamilien-Mitglied FGF2 wurden in einer vorhergehenden Studie als Hauptkandidaten bezüglich der Kontrolle einer Konversion (Schicksalsänderung) von hBMSCs in die osteogene Richtung bewertet. Der Effekt von FGF1 und FGF2 auf die Differenzierung von hBMSCs wird jedoch in der Literatur kontrovers diskutiert. Folglich zielte die aktuelle Studie darauf ab, die Effekte dieser Faktoren auf die adipogene und osteogene Differenzierung und Konversion von primären hBMSCs zu untersuchen. Außerdem sollten die nachgeschalteten Signalmechanismen aufgeklärt und die Ergebnisse abschließend bezüglich des angestrebten Therapieansatzes bewertet werden. Die vorliegende Studie zeigte eindeutig, dass die adipogene Differenzierung von hBMSCs sowie die adipogene Konversion von vordifferenzierten osteoblastischen Zellen durch die Kultur in Gegenwart von FGF1 stark inhibiert wurden. Die typische Bildung von intrazellulären Fetttropfen war bei einer Konzentration von 25 ng/µL vollständig inhibiert, während die Genexpression von frühen und späten adipogenen Markern signifikant herunterreguliert war. Die osteogenen Marker waren jedoch während der adipogenen Differenzierung und Konversion unter FGF-Zugabe nicht hochreguliert, was eine etwaige Schicksalsänderung zugunsten der osteogenen Richtung nicht unterstützte. Bei der Untersuchung der osteogenen Differenzierung von hBMSCs und der osteogenen Konversion von vordifferenzierten adipozytischen Zellen bewirkte die Zugabe von FGF1 zum Differenzierungsmedium eine deutliche Verminderung der Mineralisierung der extrazellulären Matrix (ECM). Darüber hinaus war die Genexpression der alkalischen Phosphatase (ALP) signifikant reduziert; außerdem wurde die ALP Enzymaktivität erniedrigt. Sowohl Marker des osteogenen Commitments einschließlich des osteogenen Master-Transkriptionsfaktors RUNX2 (Runt-related transcription factor 2), als auch Marker der weiterführenden osteogenen Differenzierung waren herunterreguliert. Im Kontrast dazu waren Inhibitoren der ECM-Mineralisierung hochreguliert. Die Hochregulation von ANKH (ANKH inorganic pyrophosphate transport regulator) schien hierbei jedoch keine direkte Auswirkung auf die Reduzierung der Mineralisierung zu haben; seine Wirkung wurde wahrscheinlich durch die Herunterregulation von ENPP1 (Ectonucleotide pyrophosphatase/ phosphodiesterase 1) aufgehoben. Wie FGF1 zeigte auch FGF2 eine anti-adipogene und anti-osteogene Wirkung. Der FGF Rezeptor 1 (FGFR1) war für die Weiterleitung der beschriebenen FGF-Effekte entscheidend, wobei die adipogene Konversion eine erniedrigte Beteiligung dieses Rezeptors zeigte. Bei der adipogenen Differenzierung und der osteogenen Differenzierung und Konversion waren die nachgeschalteten Signalwege ERK1/2 (Extracellular signal-regulated kinases 1 and 2) bzw. MEK1/2 (Mitogenactivated protein kinase (MAPK)/ ERK kinases 1 and 2) involviert, vermutlich über eine Phosphorylierung des FGFR Substrats FRS2a (FGFR substrate 2a) und der Ras/MAP Kinase. Im Gegensatz dazu waren die c-Jun N-terminale Kinase (JNK), die p38-MAP Kinase und die Proteinkinase C (PKC) nicht an der Weiterleitung des FGF-Signals beteiligt. Sie zeigten sich jedoch, in Übereinstimmung mit der aktuellen Literatur, verantwortlich für das Ausmaß der adipogenen bzw. osteogenen Differenzierung selbst. Zusammenfassend war die vorliegende Studie nach unserem besten Wissen die erste, die den starken Einfluss von FGF1 und FGF2 parallel sowohl auf die adipogene als auch die osteogene Differenzierung und Konversion von primären hBMSCs untersucht hat. Sie zeigte deutlich, dass, obwohl beide FGFs nicht die Differenzierung und Konversion zum osteogenen Zellschicksal hin unterstützen konnten, sie dennoch wirkungsvoll die adipogene Differenzierung und Konversion verhinderten, die während der Osteoporose erhöht zu sein scheinen. Unsere Ergebnisse lassen den Schluss zu, dass hBMSCs durch FGF1 und FGF2 in einem Stadium vor dem Schicksals-Commitment festgehalten werden. Folglich könnten diese Proteine verwendet werden, um eine ungewollte Adipogenese in vitro zu verhindern. Außerdem könnten unsere Ergebnisse helfen, einen pharmakologischen Kontrollpunkt zur Eliminierung der gesteigerten adipogenen Differenzierung und Konversion aufzudecken, welche potentielle Gründe für die Fettakkumulation und die reduzierte Osteoblastogenese im Knochenmark während des Alterns und besonders in der Osteoporose sind. KW - Mesenchymzelle KW - Genexpression KW - Fibroblastenwachstumsfaktor KW - Osteoporose KW - Fettzelle KW - Bone marrow stromal cell (BMSC) KW - Osteogenesis KW - Adipogenesis KW - Differentiation KW - adipocytes KW - Mesenchymale Stammzelle Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119322 ER -