TY - THES A1 - Lundt, Felix Janosch Peter T1 - Superconducting Hybrids at the Quantum Spin Hall Edge T1 - Supraleitende Hybrid-Strukturen auf Basis von Quanten-Spin-Hall-Randzuständen N2 - This Thesis explores hybrid structures on the basis of quantum spin Hall insulators, and in particular the interplay of their edge states and superconducting and magnetic order. Quantum spin Hall insulators are one example of topological condensed matter systems, where the topology of the bulk bands is the key for the understanding of their physical properties. A remarkable consequence is the appearance of states at the boundary of the system, a phenomenon coined bulk-boundary correspondence. In the case of the two-dimensional quantum spin Hall insulator, this is manifested by so-called helical edge states of counter-propagating electrons with opposite spins. They hold great promise, \emph{e.g.}, for applications in spintronics -- a paradigm for the transmission and manipulation of information based on spin instead of charge -- and as a basis for quantum computers. The beginning of the Thesis consists of an introduction to one-dimensional topological superconductors, which illustrates basic concepts and ideas. In particular, this includes the topological distinction of phases and the accompanying appearance of Majorana modes at their ends. Owing to their topological origin, Majorana modes potentially are essential building-blocks for topological quantum computation, since they can be exploited for protected operations on quantum bits. The helical edge states of quantum spin Hall insulators in conjunction with $s$-wave superconductivity and magnetism are a suitable candidate for the realization of a one-dimensional topological superconductor. Consequently, this Thesis investigates the conditions in which Majorana modes can appear. Typically, this happens between regions subjected to either only superconductivity, or to both superconductivity and magnetism. If more than one superconductor is present, the phase difference is of paramount importance, and can even be used to manipulate and move Majorana modes. Furthermore, the Thesis addresses the effects of the helical edge states on the anomalous correlation functions characterizing proximity-induced superconductivity. It is found that helicity and magnetism profoundly enrich their physical structure and lead to unconventional, exotic pairing amplitudes. Strikingly, the nonlocal correlation functions can be connected to the Majorana bound states within the system. Finally, a possible thermoelectric device on the basis of hybrid systems at the quantum spin Hall edge is discussed. It utilizes the peculiar properties of the proximity-induced superconductivity in order to create spin-polarized Cooper pairs from a temperature bias. Cooper pairs with finite net spin are the cornerstone of superconducting spintronics and offer tremendous potential for efficient information technologies. N2 - Diese Dissertation behandelt Strukturen auf der Grundlage von Quanten-Spin-Hall-Isolatoren, in denen deren Randzustände mit supraleitender und magnetischer Ordnung in Verbindung gebracht werden. Quanten-Spin-Hall-Isolatoren sind Beispiele für Systeme in der Festkörperphysik, deren physikalische Eigenschaften auf die topologische Struktur der Energiebänder zurückzuführen sind. Eine bemerkenswerte Konsequenz daraus ist die Entstehung von besonderen Randzuständen an der Oberfläche. Im Fall der zweidimensionalen Quanten-Spin-Hall-Isolatoren sind diese eindimensional und bestehen aus leitenden, metallischen Zuständen von gegenläufigen Elektronen mit entgegengesetztem Spin -- sogenannte helikale Randzustände. Sie bergen großes Potenzial für Anwendungen in der Spintronik, bei der Informationen nicht durch die Ladung, sondern den Spin von Elektronen übertragen werden, und als Plattform für Quantencomputer. Am Beginn der Dissertation werden eindimensionale topologische Supraleiter allgemeiner besprochen. Ausgehend von der Kitaev-Kette und einem kontinuierlichen Modell werden grundlegende Konzepte anschaulich eingeführt, insbesondere im Hinblick auf die topologische Unterscheidung von trivialer und nicht-trivialer Phase und dem Auftreten von Majorana-Zuständen an deren Enden. Letztere sind die entscheidenden Bausteine auf dem Weg zu geschützten Operationen für Quanten-Bits. Da Randzustände von Quanten-Spin-Hall-Isolatoren im Zusammenspiel mit $s$-Wellen-Supraleitung und Magnetismus eine Möglichkeit für die Realisierung eines solchen eindimensionalen topologischen Supraleiters ist, wird in der Folge untersucht, unter welchen Bedingungen Majorana-Zustände auftreten können. Es wird gezeigt, dass dies zwischen Gebieten geschieht, in denen die Randzustände entweder nur von Supraleitung oder von Supraleitung und Magnetismus beeinflusst werden. In Systemen mit mehr als einer supraleitenden Region spielt die Phasendifferenz dabei eine übergeordnete Rolle und kann sogar dazu benutzt werden, Majorana-Zustände zu manipulieren. Weiterhin behandelt die Dissertation die Auswirkungen der helikalen Randzustände auf anomale Korrelationsfunktionen, die von der Supraleitung induziert werden. Es zeigt sich, dass Helizität und Magnetismus deren Eigenschaften bereichern können und unkonventionelle, exotische Paarungs-Mechanismen auftreten. Zusätzlich wird ein Zusammenhang zu Majorana-Zuständen demonstriert. Abschließend wird eine mögliche thermoelektrische Anwendung eines hybriden Systems besprochen, die die besonderen supraleitenden Eigenschaften ausnutzt, um eine Temperaturdifferenz zur Erzeugung von Cooper-Paaren mit Spin-Polarisierung zu verwenden. Diese stellen im Rahmen der supraleitenden Spintronik vielversprechende Einheiten zur verlustarmen Übertragung von Informationen dar. KW - Mesoskopisches System KW - Kondensierte Materie KW - Theoretische Physik KW - Topologische Phase KW - Supraleitung KW - Quantum Spin Hall Effect KW - Topological Superconductivity KW - Majorana fermions KW - Topological Quantum Computing KW - Thermoelectricity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216421 ER - TY - JOUR A1 - Elster, Lars A1 - Platt, Christian A1 - Thomale, Ronny A1 - Hanke, Werner A1 - Hankiewicz, Ewelina M. T1 - Accessing topological superconductivity via a combined STM and renormalization group analysis JF - Nature Communications N2 - The search for topological superconductors has recently become a key issue in condensed matter physics, because of their possible relevance to provide a platform for Majorana bound states, non-Abelian statistics, and quantum computing. Here we propose a new scheme which links as directly as possible the experimental search to a material-based microscopic theory for topological superconductivity. For this, the analysis of scanning tunnelling microscopy, which typically uses a phenomenological ansatz for the superconductor gap functions, is elevated to a theory, where a multi-orbital functional renormalization group analysis allows for an unbiased microscopic determination of the material-dependent pairing potentials. The combined approach is highlighted for paradigmatic hexagonal systems, such as doped graphene and water-intercalated sodium cobaltates, where lattice symmetry and electronic correlations yield a propensity for a chiral singlet topological superconductor. We demonstrate that our microscopic material-oriented procedure is necessary to uniquely resolve a topological superconductor state. KW - tunneling spectroscopy KW - Sr\(_2\)RuO\(_4\) KW - states KW - transition KW - insulators KW - surface KW - Majorana fermions KW - unconventional superconductivity KW - wave superconductors Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148181 VL - 6 IS - 8232 ER -