TY - JOUR A1 - Berve, Kristina A1 - West, Brian L. A1 - Martini, Rudolf A1 - Groh, Janos T1 - Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice JF - Journal of Neuroinflammation N2 - Background The neuronal ceroid lipofuscinoses (CLN diseases) are fatal lysosomal storage diseases causing neurodegeneration in the CNS. We have previously shown that neuroinflammation comprising innate and adaptive immune reactions drives axonal damage and neuron loss in the CNS of palmitoyl protein thioesterase 1-deficient (Ppt1\(^{-/-}\)) mice, a model of the infantile form of the diseases (CLN1). Therefore, we here explore whether pharmacological targeting of innate immune cells modifies disease outcome in CLN1 mice. Methods We applied treatment with PLX3397 (150 ppm in the chow), a potent inhibitor of the colony stimulating factor-1 receptor (CSF-1R) to target innate immune cells in CLN1 mice. Experimental long-term treatment was non-invasively monitored by longitudinal optical coherence tomography and rotarod analysis, as well as analysis of visual acuity, myoclonic jerks, and survival. Treatment effects regarding neuroinflammation, neural damage, and neurodegeneration were subsequently analyzed by histology and immunohistochemistry. Results We show that PLX3397 treatment attenuates neuroinflammation in CLN1 mice by depleting pro-inflammatory microglia/macrophages. This leads to a reduction of T lymphocyte recruitment, an amelioration of axon damage and neuron loss in the retinotectal system, as well as reduced thinning of the inner retina and total brain atrophy. Accordingly, long-term treatment with the inhibitor also ameliorates clinical outcomes in CLN1 mice, such as impaired motor coordination, visual acuity, and myoclonic jerks. However, we detected a sex- and region-biased efficacy of CSF-1R inhibition, with male microglia/macrophages showing higher responsiveness toward depletion, especially in the gray matter of the CNS. This results in a better treatment outcome in male Ppt1\(^{-/-}\) mice regarding some histopathological and clinical readouts and reflects heterogeneity of innate immune reactions in the diseased CNS. Conclusions Our results demonstrate a detrimental impact of innate immune reactions in the CNS of CLN1 mice. These findings provide insights into CLN pathogenesis and may guide in the design of immunomodulatory treatment strategies. KW - Neuronal ceroid lipofuscinosis KW - Microglia KW - Macrophages KW - T lymphocytes KW - Neurodegeneration KW - Axon degeneration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230234 VL - 17 ER - TY - JOUR A1 - Groh, Janos A1 - Stadler, David A1 - Buttmann, Mathias A1 - Martini, Rudolf T1 - Non-invasive assessment of retinal alterations in mouse models of infantile and juvenile neuronal ceroid lipofuscinosis by spectral domain optical coherence tomography N2 - Introduction The neuronal ceroid lipofuscinoses constitute a group of fatal inherited lysosomal storage diseases that manifest in profound neurodegeneration in the CNS. Visual impairment usually is an early symptom and selective degeneration of retinal neurons has been described in patients suffering from distinct disease subtypes. We have previously demonstrated that palmitoyl protein thioesterase 1 deficient (Ppt1-/-) mice, a model of the infantile disease subtype, exhibit progressive axonal degeneration in the optic nerve and loss of retinal ganglion cells, faithfully reflecting disease severity in the CNS. Here we performed spectral domain optical coherence tomography (OCT) in Ppt1-/- and ceroid lipofuscinosis neuronal 3 deficient (Cln3-/-) mice, which are models of infantile and juvenile neuronal ceroid lipofuscinosis, respectively, in order to establish a non-invasive method to assess retinal alterations and monitor disease severity in vivo. Results Blue laser autofluorescence imaging revealed increased accumulation of autofluorescent storage material in the inner retinae of 7-month-old Ppt1-/- and of 16-month-old Cln3-/- mice in comparison with age-matched control littermates. Additionally, optical coherence tomography demonstrated reduced thickness of retinae in knockout mice in comparison with age-matched control littermates. High resolution scans and manual measurements allowed for separation of different retinal composite layers and revealed a thinning of layers in the inner retinae of both mouse models at distinct ages. OCT measurements correlated well with subsequent histological analysis of the same retinae. Conclusions These results demonstrate the feasibility of OCT to assess neurodegenerative disease severity in mouse models of neuronal ceroid lipofuscinosis and might have important implications for diagnostic evaluation of disease progression and therapeutic efficacy in patients. Moreover, the non-invasive method allows for longitudinal studies in experimental models, reducing the number of animals used for research. KW - Optical coherence tomography KW - Neuronal ceroid lipofuscinosis KW - Neurodegeneration KW - Retinal degeneration KW - Lysosomal storage disease Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110566 ER -