TY - THES A1 - Kade, Juliane Carolin T1 - Expanding the Processability of Polymers for a High-Resolution 3D Printing Technology T1 - Erweiterung der Verarbeitbarkeit von Polymeren für eine hochauflösende 3D-Drucktechnologie N2 - This thesis identifies how the printing conditions for a high-resolution additive manufacturing technique, melt electrowriting (MEW), needs to be adjusted to process electroactive polymers (EAPs) into microfibers. Using EAPs based on poly(vinylidene difluoride) (PVDF), their ability to be MEW-processed is studied and expands the list of processable materials for this technology. N2 - Im Rahmen dieser Arbeit wird melt electrowriting (MEW), eine hochauflösende additive Fertigungstechnik, zur Herstellung von Polymerfasern im unteren Mikrometerbereich eingesetzt. Neue Materialien, hauptsächlich elektroaktive Polymere (EAPs) auf Basis von Poly(vinylidendifluorid) (PVDF), werden hinsichtlich ihrer Druckbarkeit untersucht, um die Liste der prozessierbaren Materialien für diese Technologie zu erweitern. KW - Polymere KW - Melt electrowriting KW - Biofabrication KW - 3D-Druck KW - 3D Printing KW - Polymers Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270057 ER - TY - THES A1 - Liebscher [geb. Blöhbaum], Julia T1 - Side chain functional poly(2-oxazoline)s for biomedical applications T1 - Seitenkettenfunktionalisierte Poly(2-oxazoline) für biomedizinische Anwendungen N2 - The aim of the thesis was to develop water soluble poly(2-oxazoline) (POx) copolymers with new side group functionalities, which can be used for the formation of hydrogels in biomedical applications and for the development of peptide-polymer conjugates. First, random copolymers of the monomer MeOx or EtOx with ButEnOx and EtOx with DecEnOx were synthesized and characterized. The vinyl functionality brought into the copolymer by the monomers ButEnOx and DecEnOx would later serve for post-polymerization functionalization. The synthesized copolymers were further functionalized with thiols via post-polymerization functionalization using a newly developed synthesis protocol or with a protected catechol molecule for hydrogel formation. For the formation of peptide-polymer conjugates, a cyclic thioester, namely thiolactone acrylamide and an azlactone precursor, whose synthesis was newly developed, were attached to the side chain of P(EtOx-co-ButEnOx) copolymers. The application of the functionalized thiol copolymers as hydrogels using thiol-ene chemistry for cross-linking was demonstrated. The swelling behavior and mechanical properties were characterized. The hydrophilicity of the network as well as the cross-linking density strongly influenced the swelling behavior and the mechanical strength of the hydrogels. All hydrogels showed good cell viability results. The hydrogel networks based on MeOx and EtOx were loaded with two dyes, fluorescein and methylene blue. It was observed that the uptake of the more hydrophilic dye fluorescein depended more on the ability of the hydrogel to swell. In contrast, the uptake of the more hydrophobic dye methylene blue was less dependent on the swelling degree, but much more on the hydrophilicity of the network. For the potential application as cartilage glue, (biohybrid) hydrogels were synthesized based on the catechol-functionalized copolymers, with and without additional fibrinogen, using sodium periodate as the oxidizing agent. The system allowed for degradation due to the incorporated ester linkages at the cross-linking points. The swelling behavior as well as the mechanical properties were characterized. As expected, hydrogels with higher degrees of cross-linking showed less swelling and higher elastic modulus. The addition of fibrinogen however increased the elasticity of the network, which can be favorable for the intended application as a cartilage glue. Biological evaluation clearly demonstrated the advantage of degradable ester links in the hydrogel network, where chondrocytes were able to bridge the artificial gap in contrast to hydrogels without any ester motifs. Lastly, different ways to form peptide-polymer conjugates were presented. Peptides were attached with the thiol of the terminal cysteine group to the vinyl side chain of P(EtOx-co-ButEnOx) copolymers by radical thiol-ene chemistry. Another approach was to use a cyclic thioester, thiolactone, or an azlactone functionality to bind a model peptide via native chemical ligation. The two latter named strategies to bind peptides to POx side chains are especially interesting as one and in the case of thiolactone two free thiols are still present at the binding site after the reaction, which can, for example, be used for further thiol-ene cross-linking to form POx hydrogels. In summary, side functional poly(oxazoline) copolymers show great potential for numerous biomedical applications. The various side chain functionalities can be introduced by an appropriate monomer or by post-polymerization functionalization, as demonstrated. By their multi-functionality, hydrogel characteristics, such as cross-linking degree and mechanical strength, can be fine-tuned and adjusted depending on the application in the human body. In addition, the presented chemoselective and orthogonal reaction strategies can be used in the future to synthesize polymer conjugates, which can, for example, be used in drug delivery or in tissue regeneration. N2 - Das Ziel der Arbeit war es, wasserlösliche Poly(2-oxazolin) (POx) Copolymere mit neuen Seitenkettenfunktionalitäten zu entwickeln, welche zur Synthese von Hydrogelen für biomedizinische Anwendungen und zur Entwicklung von Peptid-Polymer Konjugaten genutzt werden können. Zunächst wurden Copolymere aus den Monomeren MeOx oder EtOx mit ButEnOx und EtOx mit DecEnOx synthetisiert und anschließend charakterisiert. Die Monomere wurden statistisch miteinander copolymerisiert, indem sie zusammen zum Start der Reaktion in das Reaktionsgefäß gegeben wurden. Die Vinyl Funktionalität, die durch die Monomere ButEnOx und DecEnOx eingebracht wurde, kann später zur nachträglichen Funktionalisierung am Polymer verwendet werden. Die synthetisierten Copolymere wurden weiterhin mit Thiolen oder mit funktionellen Catecholgruppen ausgestattet, um Hydrogele herzustellen. Um Peptid-Polymer Konjugate zu bilden, wurden zyklische Thioester, genauer Thiolacton acrylamid und ein Azlacton Präkursor, dessen Synthese neu entwickelt wurde, an die Seitenkette von P(EtOx-co-ButEnOx) Copolymere angebunden. Im Folgenden wurde die Anwendung der thiol funktionalisierten Copolymere als Hydrogele, welche mittels radikalischer Thiol-ene Chemie vernetzt wurden, präsentiert. Das Quellverhalten und die mechanischen Eigenschaften wurden analysiert. Sowohl die Hydrophilie des Netzwerkes als auch die Vernetzungsdichte beeinflusste das Quellverhalten und die mechanische Festigkeit stark. Alle Hydrogele zeigten gute Zellverträglichkeit. Die Hydrogele basierend auf MeOx und EtOx wurden außerdem mit den Farbstoffen Fluorescein und Methylenblau beladen. Es wurde beobachtet, dass von den beiden Farbstoffen die Aufnahme des hydrophileren Farbstoffs Fluorescein stärker vom Quellungsgrad des Hydrogels abhing. Hingegen war die Aufnahme des hydrophoberen Farbstoffs Methylenblau weniger davon abhängig wie sehr das Hydrogel quellen konnte, sondern stärker von der Hydrophilie des Hydrogel-Netzwerkes. Um die potenzielle Anwendung als Knorpelkleber zu testen, wurden (biohybrid) Hydrogele basierend auf Catechol-funktionalisiertem Copolymeren mit und ohne zusätzliches Fibrinogen und dem Oxidationsmittel Natriumperiodat hergestellt. Das System war durch die eingebauten Ester Vernetzungspunkte abbaubar. Das Quellverhalten und die mechanischen Eigenschaften wurden charakterisiert. Wie zu erwarten, zeigten Hydrogele mit stärkerer Vernetzung eine geringe Quellung und einen höheren elastischen Modulus. Die Zugabe von Fibrinogen jedoch erhöhte die Elastizität des Netzwerkes, welches förderlich für die avisierte Anwendung als Knorpelkleber sein kann. Die biologische Auswertung zeigte, dass die Ester-haltigen, abbaubaren Vernetzungspunkte von großem Vorteil sind. Die Chondrozyten konnten ohne Probleme den Defektspalt überbrücken, was nicht möglich war, sobald keine Ester Funktionalitäten im Hydrogel eingebunden waren. Zuletzt wurden verschiedene Möglichkeiten Peptid-Polymer Konjugate zu synthetisieren präsentiert. Zum einen wurden Peptide mit der Thiolgruppe des endständigen Cysteins an die Vinyl Seitenkette der P(EtOx-co-ButEnOx) Copolymere mittels radikalischer Thiol-en Chemie angebunden. Des Weiteren wurde ein zyklischer Thioester, das Thiolacton, und eine Azlacton Funktionalität verwendet, um ein Modell Peptid mittels nativer chemischer Ligation zu binden. Die zwei zuletzt genannten Strategien, um Peptide an Polymere zu binden, sind besonders interessant, da hier ein beziehungsweise im Fall der Thiolacton Funktionalität zwei freie Thiole an der Bindungsstelle nach der Reaktion entstehen. Diese könnten genutzt werden, um zum Beispiel über Thiol-en Chemie Peptid-haltige Hydrogele herzustellen. Zusammenfassend zeigen seitenkettenfunktionale Poly(oxazolin) Copolymere ein großes Potenzial für biomedizinische Anwendungen. Die vielen verschiedenen Seitenkettenfunktionalitäten können durch das passende Monomer oder durch Post-Polymerisationsfunktionalisierung eingebracht werden, wie in dieser Arbeit gezeigt. Durch ihre Multifunktionalität können Hydrogel Charakteristika, wie der Vernetzungsgrad und die mechanische Festigkeit, fein eingestellt und angepasst werden, je nach Anwendungsbereich im menschlichen Körper. Die entwickelten chemoselektiven und orthogonalen Reaktionswege können in der Zukunft genutzt werden, um Polymer Konjugate zu synthetisieren, welche zum Beispiel für das Drug Delivery oder im Bereich der Geweberegneration zum Einsatz kommen. KW - Polymere KW - Ringöffnungspolymerisation KW - Hydrogel KW - hydrogel KW - poly(2-oxazoline)s KW - ring-opening polymerization KW - polymer-peptide-conjugate KW - thiol-ene KW - Dihydrooxazole Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203960 ER - TY - THES A1 - Keßler, Martina T1 - Biodegradable solvent cast films and solution electrospun meshes for the prevention of postsurgical adhesions T1 - Bioabbaubare aus der Lösung gegossene Filme und elektrogesponnenen Vliese zur Prävention von Gewebeadhäsionen N2 - Intraperitoneal adhesions are fibrous bands that connect tissues in the peritoneal cavity that are usually separated. These adhesions form as a consequence of trauma, inflammation or surgical interventions and often result in severe consequences such as chronic pain, small bowel obstructions or female infertility. The aim of this thesis was to develop a synthetic barrier device for adhesion prevention made of modified poly(lactide) [PLA]. Solid PLA films (SurgiWrap®) are already successfully in clinical use due to the good biocompatibility and the biodegradability of the material resulting in non-toxic degradation products since lactic acid is naturally part of the metabolic circles of the human body. Considering the brittleness and stiffness of the films, the long degradation time of several months as well as the need for suturing, there is potential for optimization. Through a copolymerization with the hydrophilic poly(ethylene glycol) [PEG], a reduction of the degradation time was intendend. Moreover, the copolymerization should also lead to an improvement of the mechanical properties of the films since PEG acts as plasticizer for PLA. Linear PLA-PEG-PLA triblock copolymers as well as star-shaped PEG-PLA copolymers were synthesized via standard ring opening polymerization to tailor the barrier properties. Besides solid films, solution electrospun meshes from PLA and the synthesized PEG-PLA copolymers were investigated for a potential application as well. Since suturing of a barrier additionally induces adhesion formation, alginate coated membranes were prepared in order to achieve self-adhesiveness. With the intention to reduce infections and consequently inflammation, electrospun meshes and solvent cast films were loaded with the antibacterial drug triclosan and drug release as well as antibacterial efficacy was investigated. Mechanical tests confirmed that through the variation of the PEG content and branching the mechanical properties can be tailored and are in good accordance with the glass transition temperatures [Tg] of the polymers. Consequently, potentially adequate mechanical properties for surgical handling as well as for the performance within the patient’s body were successfully achieved. Degradation studies revealed that the degradation time was significantly shorter for PEG-PLA membranes than for PLA films and with an appropriate PEG content could be adjusted to the intended time frame. Cell adhesion and viability tests confirmed the non-toxicity of the clinically used PLA films as well as of PEG-PLA films and meshes. With a bioadhesion test the benefit of an alginate coated side towards the pure PLA film concerning self-adhesiveness was successfully demonstrated. Moreover, optical evaluations and a T-peel test of different alginate coated PLA films showed that the cohesion between the chemically different layers was distinctly enhanced by the use of an appropriate PEG-PLA mesh as intermediate cohesion promoting layer. In in vitro release studies with triclosan loaded films a higher release was determined for PEG-PLA than for PLA films. In agar diffusion tests a higher and longer inhibition of staphylococcus aureus growth was observed confirming the release results. Moreover, drug loaded meshes (especially drug loaded after electrospinning) showed enhanced and elongated bacterial inhibition in comparison to films. N2 - Intraperitoneale Adhäsionen sind fibröse Bänder, die Gewebe in der Peritonealhöhle miteinander verbinden, die normalerweise voneinander getrennt sind. Diese Adhäsionen entstehen als Folge von Trauma, Entzündung oder chirurgischen Eingriffen und bringen oft schwerwiegende Folgen mit sich wie chronische Schmerzen, Dünndarmobstruktionen oder Unfruchtbarkeit bei Frauen. Ziel dieser Arbeit war es, synthetische Barrieren aus modifiziertem Poly(laktid) [PLA] für die Adhäsionsprävention zu entwickeln. PLA-Filme (SurgiWrap®) werden bereits erfolgreich klinisch eingesetzt aufgrund der guten Biokompatibilität und der Bioabbaubarkeit des Materials mit seinen ungiftigen Abbauprodukten, da Milchsäure natürlicher Bestandteil der metabolischen Zyklen im menschlichen Körper ist. Betrachtet man jedoch die Sprödigkeit und Steifigkeit der Filme, die lange Abbauzeit von mehreren Monaten sowie die Notwendigkeit des Annähens, erkennt man noch Verbesserungspotential. Durch eine Copolymerisation mit hydrophilem Poly(ethylen glykol) [PEG] wurde eine Reduktion der Abbauzeit angestrebt. Zusätzlich sollte die Copolymerisation zu einer Verbesserung der mechanischen Eigenschaften der Filme führen, da PEG als Weichmacher von PLA dient. Lineare PLA-PEG-PLA-Triblock-Copolymere sowie sternförmige PEG-PLA-Copolymere wurden über eine Standard-Ringöffnungspolymerisation synthetisiert um die Barriereeigenschaften maßzuschneidern. Neben massiven Filmen wurden aus der Lösung elektrogesponnene Vliese aus PLA und den synthetisierten PEG-PLA-Copolymeren für eine potentielle Anwendung untersucht. Da das Annähen einer Barriere zusätzlich Adhäsionsbildung hervorruft, wurden mit Alginat beschichtete Membranen hergestellt um eine Selbsthaftung zu erreichen. Mit der Intention, Infektionen und damit Entzündungen zu reduzieren, wurden elektrogesponnene Vliese und aus der Lösung gegossene Filme mit dem antibakteriellen Arzneistoff Triclosan beladen und die Freisetzung sowie die antibakterielle Wirksamkeit untersucht. Mechanische Tests bestätigten, dass mit der Variation von PEG-Gehalt und Verzweigung die mechanischen Eigenschaften zugeschnitten werden können und gut mit den Glasübergangstemperaturen der Polymere in Einklang stehen. Folglich konnten potentiell passende mechanische Eigenschaften für die chirurgische Handhabung sowie für das Verhalten im Körper des Patienten erfolgreich erreicht werden. Abbaustudien zeigten, dass die Abbauzeit von PEG-PLA-Membranen signifikant kürzer war als von PLA-Filmen und mit geeignetem PEG-Gehalt erfolgreich auf den erzielten Zeitraum hin angepasst werden konnte. Zelladhäsion und Zellviabilitätstests bestätigten die Ungiftigkeit der klinisch eingesetzten PLA-Filme sowie der PEG-PLA-Filme und –Vliese. Mit einem Bioadhäsionstest konnte der Nutzen einer Alginatbeschichtung gegenüber einem reinen PLA-Film bezüglich einer Selbsthaftung erfolgreich gezeigt werden. Außerdem ergaben visuelle Begutachtungen und ein T-Peeltest von verschiedenen mit Alginat beschichteten PLA-Filmen, dass die Kohäsion zwischen den chemisch unterschiedlichen Schichten durch den Einsatz eines geeigneten PEG-PLA-Vlieses als kohäsionsfördernde Zwischenschicht deutlich verstärkt wurde. In in vitro Freisetzungsstudien mit Triclosan-beladenen Filmen wurde eine höhere Freisetzung für PEG-PLA- als für PLA-Filme bestimmt. In Agardiffusionstests wurde eine höhere und längere Wachstumshemmung von Staphylococcus aureus beobachtet, was die Freisetzungsergebnisse bestätigt. Weiterhin zeigten Arzneistoff-beladene Vliese (insbesondere mit Arzneistoffbeladung nach dem Elektrospinning) eine verstärkte und verlängerte bakterielle Inhibition im Vergleich zu Filmen. KW - Polymere KW - Biologischer Abbau KW - Polyethylenglykole KW - postsurgical adhesion KW - biodegradable polymer KW - Polymilchsäure KW - Adhäsion KW - polylactid KW - polyethylenglykole KW - Blockcopolymere Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129358 ER - TY - THES A1 - Heffels, Karl-Heinz T1 - Functional nanofibres for regenerative medicine T1 - Funktionelle Nanofasern für die regenerative Medizin N2 - This thesis concerned the design and examination of a scaffold for tissue engineering applications. The template for the presented scaffold came from nature itself: the intercellular space in tissues that provides structure and support to the cells of the respective tissue, known as extracellular matrix (ECM). Fibres are a predominant characteristic feature of ECM, providing adhesion sites for cell-matrix interactions. In this dissertation a fibrous mesh was generated using the electrospinning technique to mimic the fibrous structure of the ECM. Two base polymers were explored: a biodegradable polyester, poly(D,L-lactide-co-glycolide); and a functional PEG-based star polymer, NCO-sP(EO-stat-PO). This topic was described in three major parts: the first part was materials based, concerning the chemical design and characterisation of the polymer scaffolds; the focus was then shifted to the cellular response to this fibrous scaffold; and finally the in vivo performance of the material was preliminarily assessed. The first steps towards an electrospun mesh started with adjusting the spinning parameters for the generation of homogeneous fibres. As reported in Chapter 3 a suitable setup configuration was on the one hand comprised of a spinning solution that consisted of 28.5 w/v% PLGA RG 504 and 6 w/v% NCO-sP(EO-stat-PO) in 450 µL acetone, 50 µL DMSO and 10 µL of an aqueous trifluoroacetic acid solution. On the other hand an ideal spinning behaviour was achieved at process parameters such as a flow rate of 0.5 mL/h, spinneret to collector distance of 12-16 cm and a voltage of 13 kV. The NCO-sP(EO-stat-PO) containing fibres proved to be highly hydrophilic as the functional additive was present on the fibre surface. Furthermore, the fibres featured a bulk degradation pattern as a consequence of the proportion of PLGA. Besides the morphologic similarity to ECM fibres, the functionality of the electrospun fibres is also decisive for a successful ECM mimicry. In Chapter 4, the passive as well as active functionality of the fibres was investigated. The fibres were required to be protein repellent to prevent an unspecific cell adhesion. This was proven as even 6.5 % sP(EO-stat-PO) in the PLGA fibres reduced any unspecific protein adsorption of bovine serum albumin and foetal calf serum to less than 1 %. However, avidin based proteins attached to the fibres. This adhesion process was avoided by an additional fibre surface treatment with glycidol. The active functionalisation of NCO-sP(EO-stat-PO)/PLGA fibres was investigated with two fluorescent dyes and biocytin. A threefold, chemically orthogonal, fibre modification was achieved with these dyes. The chapters about the chemical and mechanical properties laid the basis for the in vitro chapters where a specific fibre functionalisation with peptides was conducted to analyse the cell adhesion and biochemical expressions. Beginning with fibroblasts in Chapter 5 the focus was on the specific cell adhesion on the electrospun fibres. While NCO-sP(EO-stat-PO)/PLGA fibres without peptides did not allow any adhesion of fibroblasts, a fibre modification with GRGDS (an adhesion mediating peptide sequence) induced the adhesion and spreading of human dermal fibroblasts on the fibrous scaffolds. The control sequence GRGES that has no adhesion mediating qualities did not lead to any cell adhesion as observed on fibres without modifications. While the experiments of Chapter 5 were a proof-of-concept, in Chapter 6 a possible application in cartilage tissue engineering was examined. Therefore, primary human chondrocytes were seeded on fibrous scaffolds with various peptide sequences. Though the chondrocytes exhibited high viability on all scaffolds, an active interaction of cells and fibres was only found for the decorin derived sequence CGKLER. Live-cell-imaging revealed both cell attachment and migration within CGKLER-modified meshes. As chondrocytes undergo a de-differentiation towards a fibroblast-like phenotype, the chondrogenic re-differentiation on these scaffolds was investigated in a long term cell culture experiment of 28 days. Therefore, the glycosaminoglycan production was analysed as well as the mRNA expression of genes coding for collagen I and II, aggrecan and proteoglycan 4. In general only low amounts of the chondrogenic markers were measured, suggesting no chondrogenic differentiation. For conclusive evidence follow-up experiments are required that support or reject the findings. The success of an implant for tissue engineering relies not only on the response of the targeted cell type but also on the immune reaction caused by leukocytes. Hence, Chapter 7 dealt with primary human macrophages and their behaviour and phenotype on two-dimensional (2D) surfaces compared to three-dimensional (3D) fibrous substrates. It was found that the general non-adhesiveness of NCO-sP(EO-stat-PO) surfaces and fibres does not apply to macrophages. The cells aligned along the fibres on surfaces or resided in the pores of the meshes. On flat surfaces without 3D structure the macrophages showed a retarded adhesion kinetic accompanied with a high migratory activity indicating their search for a topographical feature to adhere to. Moreover, a detailed investigation of cell surface markers and chemokine signalling revealed that macrophages on 2D surfaces exhibited surface markers indicating a healing phenotype while the chemokine release suggested a pro-inflammatory phenotype. Interestingly, the opposite situation was found on 3D fibrous substrates with pro-inflammatory surface markers and pro-angiogenic cytokine release. As the immune response largely depends on cellular communication, it was concluded that the NCO-sP(EO-stat-PO)/PLGA fibres induce an adequate immune response with promising prospects to be used in a scaffold for tissue engineering. The final chapter of this thesis reports on a first in vivo study conducted with the presented electrospun fibres. Here, the fibres were combined with a polypropylene mesh for the treatment of diaphragmatic hernias in a rabbit model. Two scaffold series were described that differed in the overall surface morphology: while the fibres of Series A were incorporated into a thick gel of NCO-sP(EO-stat-PO), the scaffolds of Series B featured only a thin hydrogel layer so that the overall fibrous structure could be retained. After four months in vivo the treated defects of the diaphragm were significantly smaller and filled mainly with scar tissue. Thick granulomas occurred on scaffolds of Series A while the implants of Series B did not induce any granuloma formation. As a consequence of the generally positive outcome of this study, the constructs were enhanced with a drug release system in a follow-up project. The incorporated drug was the MMP-inhibitor Ilomastat which is intended to reduce the formation of scar tissue. In conclusion, the simple and straight forward fabrication, the threefold functionalisation possibility and general versatile applicability makes the meshes of NCO-sP(EO-stat-PO)/PLGA fibres a promising candidate to be applied in tissue engineering scaffolds in the future. N2 - Diese Dissertation beschäftigte sich mit der Entwicklung und Untersuchung eines Gerüsts zur Geweberegeneration. Der interzelluläre Raum, der in Geweben für die Gewebestruktur verantwortlich ist, wurde als Vorbild aus der Natur für das entwickelte Gerüst verwendet. Fasern sind in dieser extrazellulären Matrix (EZM) ein charakteristischer Bestandteil, die Adhäsionssequenzen für Zell-Matrix-Interaktionen enthalten und zur strukturellen Organisation der Gewebe beitragen. In der vorliegenden Arbeit wurden Faservliese mit Hilfe des elektrostatischen Verspinnens hergestellt, um die natürlichen Fasern der EZM zu imitieren. Zwei Polymere bildeten die chemische Grundlage für diese Fasern: Ein bioabbaubarer Polyester, Poly(D,L-Laktid-co-Glykolid) (PLGA) und ein funktionales auf Polyethylenglykol basierendes, sternförmiges Polymer, NCO-sP(EO-stat-PO). Der erste Teil des in drei Hauptteile untergliederten Themas beschäftigte sich mit dem chemischen Design und der Fasercharakterisierung im Sinne der Materialeigenschaften. Der zweite Teil betrachtet die Auswirkungen der Fasern auf zellulärer Ebene, während der dritte Teil einen ersten Eindruck über die in vivo Reaktion auf die Materialien vermittelt. Die ersten Schritte in Richtung eines elektrostatisch gesponnenen Vlieses begannen mit der Erforschung geeigneter Einstellungen für eine homogene Faserproduktion. Kapitel 3 thematisiert geeignete Spinnparameter, zu denen auf der einen Seite eine spinnfähige Lösung gehörte, die aus 28.5 w/v% PLGA RG 504 und 6 w/v% NCO-sP(EO-stat-PO) in 450 µL Aceton, 50 µL DMSO und 10 µL trifluoressigsaurer wässriger Lösung besteht. Auf der anderen Seite wurden Prozessparameter gefunden, wie zum Beispiel eine Flussrate von 0.5 mL/h und ein Kollektor-Abstand von 12-16 cm, die bei einer Potentialdifferenz von 13 kV ein stabiles Spinnverhalten garantierten. Fasern mit dem Additiv NCO-sP(EO-stat-PO) zeigten eine äußerst starke Hydrophilie, da das Additiv während des Spinnprozesses an die Faseroberfläche segregierte. Des Weiteren sind die Fasern dank des PLGA-Anteils nach einem Volumenabbaumechanismus unter physiologischen Bedingungen degradierbar. Neben der morphologischen Ähnlichkeit zwischen natürlichen Fasern der EZM und elektrogesponnenen Fasern ist die Funktionalität der synthetischen Fasern entscheidend für eine erfolgreiche Imitation der EZM. Kapitel 4 betrachtet deswegen sowohl die passive als auch aktive Funktionalität der Fasern. Unter passive Funktionalität fällt das proteinabweisende Verhalten, welches eine unspezifische Zelladhäsion verhindert. Es wurde gezeigt, dass ein Anteil von 6.5 % sP(EO-stat-PO) in den PLGA-Fasern ausreicht, um die unspezifische Adhäsion von Albumin aus Rinderserum und fötalem Kälberserum auf weniger als 1 % zu senken. Dennoch adhärierten avidinbasierte Proteine auf den Fasern, was jedoch durch eine Behandlung mit Glycidol unterbunden werden konnte. Die aktive Funktionalisierung wurde exemplarisch mit zwei Fluoreszenzfarbstoffen und Biocytin untersucht. Mit diesen Modellmolekülen wurde eine dreifache, chemisch orthogonale Fasermodifizierung erreicht. Die Kapitel über die chemischen und mechanischen Eigenschaften haben die Grundlage für in vitro Zellversuche gelegt, bei denen eine Faserfunktionalisierung mit Peptidsequenzen durchgeführt wurde, um eine spezifische Zelladhäsion zu erreichen und die biochemische Reaktion der Zellen zu untersuchen. In Kapitel 5 lag der Fokus auf der spezifischen Adhäsion von humanen dermalen Fibroblasten an den elektrogesponnenen Fasern. Während NCO-sP(EO-stat-PO)/PLGA Fasern ohne Peptide keine Zelladhäsion zuließen, induzierte eine Fasermodifikation mit GRGDS, einer adhäsionsvermittelnden Peptidsequenz, sowohl die Adhäsion als auch Ausbreitung der Fibroblasten auf den Fasern. Eine Kontrollsequenz ohne adhäsionsvermittelnde Eigenschaften (GRGES), führte, wie auch Fasern ohne Peptide, zu keiner Zelladhäsion. Die Experimente von Kapitel 6 gingen über das reine Machbarkeitskonzept von Kapitel 5 hinaus, indem eine mögliche Anwendung im Bereich der Knorpelregeneration untersucht wurde. Daher wurden primäre humane Chondrozyten auf Faservliesen ausgesät, die mit unterschiedlichen Peptiden modifiziert wurden. Trotz einer allgemein sehr guten Vitalität der Zellen auf allen Fasertypen, zeigten die Chondrozyten nur auf Vliesen mit der aus Decorin abgeleiteten CGKLER-Sequenz eine aktive Interaktion. Diese konnte mit dem Live-Cell-Imaging-Verfahren anhand der Zelladhäsion und Zellmigration beobachtet werden. Da Chondrozyten in der 2D-Expansionszellkultur einer Dedifferenzierung in Richtung eines Fibroblasten ähnlichen Zelltypen unterliegen, wurde eine 28-tägige Studie durchgeführt, um das Redifferenzierungsverhalten auf den Fasergerüsten zu untersuchen. Dazu wurde sowohl die Glykosaminoglykanproduktion analysiert als auch die mRNA Expression der Gene, die die Kollagen I und II, Aggrecan und Proteoglykan 4 Produktion regulieren. Die chondrogenen Marker wurden in diesen Versuchen nur geringfügig ausgeschüttet, was in Anbetracht der großen Varianzen in den Messwerten auf keine Redifferenzierung schließen lässt. Für eine abschließende Beurteilung werden Folgeexperimente empfohlen, die die gemachten Beobachtungen bestärken oder widerlegen. Der Erfolg eines Implantats zur Geweberegeneration beruht nicht nur auf der gewünschten Reaktion des Zielzelltyps, sondern auch auf der Immunreaktion des Organismus, welche durch Leukozyten gesteuert wird. Folglich beschäftigte sich Kapitel 7 mit dem Verhalten und den Phänotypen primärer humaner Makrophagen auf dreidimensionalen Fasergerüsten und zweidimensionalen Oberflächen im Vergleich zueinander. Bei den Versuchen zeigte sich, dass die generelle Nicht-Adhäsivität von NCO-sP(EO-stat-PO) Oberflächen für Makrophagen nicht zutrifft. Die Zellen richteten sich an den Fasern auf den Oberflächen aus oder saßen in den Poren der Vliese. Auf flachen Oberflächen ohne dreidimensionale Struktur wiesen die Makrophagen ein verzögertes Adhäsionsverhalten auf und migrierten stark über die Oberfläche auf der Suche nach topographischen Unebenheiten, um dort adhärent zu werden. Des Weiteren zeigte eine detaillierte Untersuchung der Oberflächenmarker und der Zytokinausschüttung, dass Makrophagen auf 2D-Oberflächen gemäß der Oberflächenmarker einen entzündungs-hemmenden Phänotypen aufwiesen, während die Zytokinausschüttung einen entzündungs-fördernden Phänotypen suggerierte. Interessanterweise bot sich das entgegengesetzte Bild auf 3D-Faseroberflächen. Hier wurde die Erkenntnis gewonnen, dass die Morphologie einen größeren Einfluss auf die Zellreaktion hat als die Oberflächenchemie. Da die Immunantwort eines Organismus auf ein Implantat stark von der interzellularen Kommunikation abhängt, wurde gefolgert, dass die NCO-sP(EO-stat-PO)/PLGA Fasern eine adäquate Immunantwort hervorrufen mit vielversprechenden Aussichten, die Fasergerüste im Bereich der Geweberegeneration einzusetzen. Das letzte Kapitel der Dissertation berichtet über eine erste in vivo Studie der hier vorgestellten Fasern. Mit den Fasern wurde ein bestehendes Behandlungskonzept für Hernien des Zwerchfells erweitert und die Leistungsfähigkeit in einem Kaninchenmodell überprüft. Zwei Gerüsttypen wurden untersucht, die sich in der Oberflächenmorphologie maßgeblich unterschieden: In Serie A wurden die elektrogesponnenen Fasern in ein Gel aus NCO-sP(EO-stat-PO) gebettet, während die Fasern in Serie B nur mit einer dünnen Gelschicht bedeckt wurden, so dass die topografische Faserstruktur erhalten blieb. Nach 4 Monaten in vivo waren die behandelten Zwerchfelldefekte signifikant kleiner und überwiegend mit Narbengewebe gefüllt. Die ausgeprägte Granulombildung bei Fasergerüsten der Serie A konnte in der darauffolgenden Studie (Serie B) minimiert werden. Das gute Abschneiden dieser Studien wurde zum Anlass genommen, die Vliese weiterzuentwickeln und eine Medikamentenfreisetzung (Ilomastat) zu integrieren, um die Narbenbildung zu minimieren. Zusammenfassend beschreibt diese Dissertation einen einfachen und direkten Weg, Fasern für eine gezielte Geweberegeneration zu erzeugen, die dreifach funktionalisierbar und vielseitig anwendbar sind. Dies macht Fasergerüste auf der Basis von NCO-sP(EO-stat-PO)/PLGA zu einem vielversprechenden Kandidaten um in der Geweberegeneration eingesetzt zu werden. KW - Nanofaser KW - Gewebe KW - Regeneration KW - Extrazelluläre Matrix KW - Polymere KW - Elektrostatisches Verspinnen KW - Geweberegeneration KW - Fibroblasten KW - Makrophagen KW - Chondrozyten KW - Wirkstofffreisetzung KW - Oberflächenfunktionalisierung KW - Electrospinning KW - tissue engineering KW - surface functionalisation KW - drug release Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75684 N1 - Die Arbeit wurde am Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde angefertigt ER -