TY - JOUR A1 - Peters, Sarah A1 - Frisch, Sabine A1 - Stock, Annika A1 - Merta, Julien A1 - Bäumer, Christian A1 - Blase, Christoph A1 - Schuermann, Eicke A1 - Tippelt, Stephan A1 - Bison, Brigitte A1 - Frühwald, Michael A1 - Rutkowski, Stefan A1 - Fleischhack, Gudrun A1 - Timmermann, Beate T1 - Proton beam therapy for pediatric tumors of the central nervous system — experiences of clinical outcome and feasibility from the KiProReg study JF - Cancers N2 - As radiotherapy is an important part of the treatment in a variety of pediatric tumors of the central nervous system (CNS), proton beam therapy (PBT) plays an evolving role due to its potential benefits attributable to the unique dose distribution, with the possibility to deliver high doses to the target volume while sparing surrounding tissue. Children receiving PBT for an intracranial tumor between August 2013 and October 2017 were enrolled in the prospective registry study KiProReg. Patient’s clinical data including treatment, outcome, and follow-up were analyzed using descriptive statistics, Kaplan–Meier, and Cox regression analysis. Adverse events were scored according to the Common Terminology Criteria for Adverse Events (CTCAE) 4.0 before, during, and after PBT. Written reports of follow-up imaging were screened for newly emerged evidence of imaging changes, according to a list of predefined keywords for the first 14 months after PBT. Two hundred and ninety-four patients were enrolled in this study. The 3-year overall survival of the whole cohort was 82.7%, 3-year progression-free survival was 67.3%, and 3-year local control was 79.5%. Seventeen patients developed grade 3 adverse events of the CNS during long-term follow-up (new adverse event n = 7; deterioration n = 10). Two patients developed vision loss (CTCAE 4°). This analysis demonstrates good general outcomes after PBT. KW - proton beam therapy KW - childhood cancer KW - brain cancer KW - adverse events KW - imaging changes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297489 SN - 2072-6694 VL - 14 IS - 23 ER - TY - JOUR A1 - Wieland, Annalena A1 - Strissel, Pamela L. A1 - Schorle, Hannah A1 - Bakirci, Ezgi A1 - Janzen, Dieter A1 - Beckmann, Matthias W. A1 - Eckstein, Markus A1 - Dalton, Paul D. A1 - Strick, Reiner T1 - Brain and breast cancer cells with PTEN loss of function reveal enhanced durotaxis and RHOB dependent amoeboid migration utilizing 3D scaffolds and aligned microfiber tracts JF - Cancers N2 - Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy. KW - 3D tumor model KW - 3D microfiber KW - amoeboid cell migration KW - brain cancer KW - breast cancer KW - PTEN KW - RHO KW - ROCK KW - durotaxis KW - topotaxis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248443 SN - 2072-6694 VL - 13 IS - 20 ER - TY - JOUR A1 - Said, Harun M. A1 - Polat, Buelent A1 - Stein, Susanne A1 - Guckenberger, Mathias A1 - Hagemann, Carsten A1 - Staab, Adrian A1 - Katzer, Astrid A1 - Anacker, Jelena A1 - Flentje, Michael A1 - Vordermark, Dirk T1 - Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells JF - World Journal of Clinical Oncology N2 - AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 x 10(7) cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5'-GCATTATTGGCATGGGAAC-3' and 5'-ATGCAGAGTAACGTGGAAG-3'. reverse transcription polymerase chain reaction was performed using primers designed using published information on -actin and hypoxia-inducible factor (HIF)-1 mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays. KW - Strahlentherapie KW - brain cancer KW - radiotherapy KW - human cancer diseases KW - Short dsRNA oligonucleotides KW - N-Myc down regulated gene 1 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123385 VL - 3 IS - 7 ER -