TY - JOUR A1 - Thiess, Torsten A1 - Ernst, Moritz A1 - Kupfer, Thomas A1 - Braunschweig, Holger T1 - Facile Access to Substituted 1,4‐Diaza‐2,3‐Diborinines JF - Chemistry – A European Journal N2 - Several bis(dimethylamino)‐substituted 1,4‐diaza‐2,3‐diborinines (DADBs) were synthesized with variable substituents at the backbone nitrogen atoms. By reaction with HCl or BX\(_{3}\) (X=Br, I), these species were successfully converted into their synthetically more useful halide congeners. The high versatility of the generated B−X bonds in further functionalization reactions at the boron centers was demonstrated by means of salt elimination (MeLi) and commutation (NMe\(_{2}\) DADBs) reactions, thus making the DADB system a general structural motif in diborane(4) chemistry. A total of 18 DADB derivatives were characterized in the solid state by X‐ray diffraction, revealing a strong dependence of the heterocyclic bonding parameters from the exocyclic substitution pattern at boron. According to our experiments towards the realization of a Dipp‐substituted, sterically encumbered DADB, the mechanism of DADB formation proceeds via a transient four‐membered azadiboretidine intermediate that subsequently undergoes ring expansion to afford the six‐membered DADB heterocycle. KW - azadiboretidines KW - B,N-heterocycles KW - diazadiborinines KW - diboranes KW - ring expansion Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214650 VL - 26 IS - 13 SP - 2967 EP - 2972 ER - TY - JOUR A1 - Thiess, Torsten A1 - Mellerup, Soren K. A1 - Braunschweig, Holger T1 - B–B Cleavage and Ring-Expansion of a 1,4,2,3-Diazadiborinine with N-Heterocyclic Carbenes JF - Chemistry - A European Journal N2 - A 1,4,2,3‐diazadiborinine derivative was found to form Lewis adducts with strong two‐electron donors such as N‐heterocyclic and cyclic (alkyl)(amino)carbenes. Depending on the donor, some of these Lewis pairs are thermally unstable, converting to sole B,N‐embedded products upon gentle heating. The products of these reactions, which have been fully characterized by NMR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction, were identified as B,N‐heterocycles with fused 1,5,2,4‐diazadiborepine and 1,4,2‐diazaborinine rings. Computational modelling of the reaction mechanism provides insight into the formation of these unique structures, suggesting that a series of B−H, C−N, and B−B bond activation steps are responsible for these “intercalation” reactions between the 1,4,2,3‐diazadiborinine and NHCs. KW - B,N-heterocylcles KW - B-B bond activation KW - diazadiborinines KW - NHCs KW - ring-expansion reactions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206173 VL - 25 IS - 59 ER -