TY - JOUR A1 - Whisnant, Adam W. A1 - Jürges, Christopher S. A1 - Hennig, Thomas A1 - Wyler, Emanuel A1 - Prusty, Bhupesh A1 - Rutkowski, Andrzej J. A1 - L'hernault, Anne A1 - Djakovic, Lara A1 - Göbel, Margarete A1 - Döring, Kristina A1 - Menegatti, Jennifer A1 - Antrobus, Robin A1 - Matheson, Nicholas J. A1 - Künzig, Florian W. H. A1 - Mastrobuoni, Guido A1 - Bielow, Chris A1 - Kempa, Stefan A1 - Liang, Chunguang A1 - Dandekar, Thomas A1 - Zimmer, Ralf A1 - Landthaler, Markus A1 - Grässer, Friedrich A1 - Lehner, Paul J. A1 - Friedel, Caroline C. A1 - Erhard, Florian A1 - Dölken, Lars T1 - Integrative functional genomics decodes herpes simplex virus 1 JF - Nature Communications N2 - The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution. Here, using computational integration of multi-omics data, the authors provide a detailed transcriptome and translatome of herpes simplex virus 1 (HSV-1), including previously unidentified ORFs and N-terminal extensions. The study also provides a HSV-1 genome browser and should be a valuable resource for further research. KW - infected-cell protein KW - messenger RNA KW - binding protein KW - type 1 KW - identification KW - ICP27 KW - translation KW - expression KW - sequence KW - domain Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229884 VL - 11 ER - TY - JOUR A1 - Fehrholz, Markus A1 - Seidenspinner, Silvia A1 - Kunzmann, Steffen T1 - Expression of surfactant protein B is dependent on cell density in H441 lung epithelial cells JF - PLoS ONE N2 - Background Expression of surfactant protein (SP)-B, which assures the structural stability of the pulmonary surfactant film, is influenced by various stimuli, including glucocorticoids; however, the role that cell-cell contact plays in SP-B transcription remains unknown. The aim of the current study was to investigate the impact of cell-cell contact on SP-B mRNA and mature SP-B expression in the lung epithelial cell line H441. Methods Different quantities of H441 cells per growth area were either left untreated or incubated with dexamethasone. The expression of SP-B, SP-B transcription factors, and tight junction proteins were determined by qPCR and immunoblotting. The influence of cell density on SP-B mRNA stability was investigated using the transcription inhibitor actinomycin D. Results SP-B mRNA and mature SP-B expression levels were significantly elevated in untreated and dexamethasone-treated H441 cells with increasing cell density. High cell density as a sole stimulus was found to barely have an impact on SP-B transcription factor and tight junction mRNA levels, while its stimulatory ability on SP-B mRNA expression could be mimicked using SP-B-negative cells. SP-B mRNA stability was significantly increased in high-density cells, but not by dexamethasone alone. Conclusion SP-B expression in H441 cells is dependent on cell-cell contact, which increases mRNA stability and thereby potentiates the glucocorticoid-mediated induction of transcription. Loss of cell integrity might contribute to reduced SP-B secretion in damaged lung cells via downregulation of SP-B transcription. Cell density-mediated effects should thus receive greater attention in future cell culture-based research. KW - messenger RNA KW - surfactants KW - epithelial cells KW - transcription factors KW - gene expression KW - tight junctions KW - adenocarcinoma of the lung KW - immunoblotting Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158291 VL - 12 IS - 9 ER - TY - JOUR A1 - Kramer, Susanne T1 - The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes JF - PLoS Pathogens N2 - 5’-3’ decay is the major mRNA decay pathway in many eukaryotes, including trypanosomes. After deadenylation, mRNAs are decapped by the nudix hydrolase DCP2 of the decapping complex and finally degraded by the 5’-3’ exoribonuclease. Uniquely, trypanosomes lack homologues to all subunits of the decapping complex, while deadenylation and 5’-3’ degradation are conserved. Here, I show that the parasites use an ApaH-like phosphatase (ALPH1) as their major mRNA decapping enzyme. The protein was recently identified as a novel trypanosome stress granule protein and as involved in mRNA binding. A fraction of ALPH1 co-localises exclusively with the trypanosome 5’-3’ exoribonuclease XRNA to a special granule at the posterior pole of the cell, indicating a connection between the two enzymes. RNAi depletion of ALPH1 is lethal and causes a massive increase in total mRNAs that are deadenylated, but have not yet started 5’-3’ decay. These data suggest that ALPH1 acts downstream of deadenylation and upstream of mRNA degradation, consistent with a function in mRNA decapping. In vitro experiments show that recombinant, N-terminally truncated ALHP1 protein, but not a catalytically inactive mutant, sensitises the capped trypanosome spliced leader RNA to yeast Xrn1, but only if an RNA 5’ polyphosphatase is included. This indicates that the decapping mechanism of ALPH1 differs from the decapping mechanism of Dcp2 by leaving more than one phosphate group at the mRNA’s 5’ end. This is the first reported function of a eukaryotic ApaH-like phosphatase, a bacterial-derived class of enzymes present in all phylogenetic super-groups of the eukaryotic kingdom. The substrates of eukaryotic ApaH-like phosphatases are unknown. However, the substrate of the related bacterial enzyme ApaH, diadenosine tetraphosphate, is highly reminiscent of a eukaryotic mRNA cap. KW - eukaryota KW - Trypanosoma KW - RNA interference KW - messenger RNA Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158482 VL - 13 IS - 6 ER - TY - JOUR A1 - Glaser, Kirsten A1 - Fehrholz, Markus A1 - Curstedt, Tore A1 - Kunzmann, Steffen A1 - Speer, Christian P. T1 - Effects of the New Generation Synthetic Reconstituted Surfactant CHF5633 on Pro- and Anti-Inflammatory Cytokine Expression in Native and LPS-Stimulated Adult CD14\(^{+}\) Monocytes JF - PLoS ONE N2 - Background Surfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes. Methods Highly purified adult CD14\(^{+}\) cells, either native or simultaneously stimulated with LPS, were exposed to CHF5633, its components, or poractant alfa (Curosurf\(^{®}\)). Subsequent expression of TNF-α, IL-1β, IL-8 and IL-10 mRNA was quantified by real-time quantitative PCR, corresponding intracellular cytokine synthesis was analyzed by flow cytometry. Potential effects on TLR2 and TLR4 mRNA and protein expression were monitored by qPCR and flow cytometry. Results Neither CHF5633 nor any of its components induced inflammation or apoptosis in native adult CD14\(^{+}\) monocytes. Moreover, LPS-induced pro-inflammatory responses were not aggravated by simultaneous exposure of monocytes to CHF5633 or its components. In LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h). Reduction of LPS-induced IL-1β mRNA expression was not significant (0.73 ± 0.16, p = 0.17 at 4h). LPS-induced IL-8 and IL-10 mRNA and protein expression were unaffected by CHF5633. For all cytokines, the observed CHF5633 effects paralleled a Curosurf®-induced modulation of cytokine response. TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf®, neither in native nor in LPS-stimulated adult monocytes. Conclusion The new generation reconstituted synthetic surfactant CHF5633 was tested for potential immunomodulation on native and LPS-activated adult human monocytes. Our data confirm that CHF5633 does not exert unintended pro-inflammatory effects in both settings. On the contrary, CHF5633 significantly suppressed TNF-α mRNA expression in LPS-stimulated adult monocytes, indicating potential anti-inflammatory effects. KW - adults KW - monocytes KW - surfactants KW - cytokines KW - protein expression KW - flow cytometry KW - messenger RNA KW - cloning Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180195 VL - 11 IS - 1 ER - TY - JOUR A1 - Fan, Ben A1 - Li, Lei A1 - Chao, Yanjie A1 - Förstner, Konrad A1 - Vogel, Jörg A1 - Borriss, Rainer A1 - Wu, Xiao-Qin T1 - dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42 JF - PLoS One N2 - Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions. KW - gene expression KW - subtilis genome KW - enterica serovar thphimurium KW - small regulatory RNAs KW - binding protein HFQ KW - escherichia coli KW - messenger RNA KW - transcriptional landscape KW - mycobacterium tuberculosis KW - listeria monocytogenes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138369 VL - 10 IS - 11 ER - TY - JOUR A1 - Wille, Michael A1 - Schümann, Antje A1 - Wree, Andreas A1 - Kreutzer, Michael A1 - Glocker, Michael O. A1 - Mutzbauer, Grit A1 - Schmitt, Oliver T1 - The Proteome Profiles of the Cerebellum of Juvenile, Adult and Aged Rats-An Ontogenetic Study JF - International Journal of Molecular Sciences N2 - In this study, we searched for proteins that change their expression in the cerebellum (Ce) of rats during ontogenesis. This study focuses on the question of whether specific proteins exist which are differentially expressed with regard to postnatal stages of development. A better characterization of the microenvironment and its development may result from these study findings. A differential two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of the samples revealed that the number of proteins of the functional classes differed depending on the developmental stages. Especially members of the functional classes of biosynthesis, regulatory proteins, chaperones and structural proteins show the highest differential expression within the analyzed stages of development. Therefore, members of these functional protein groups seem to be involved in the development and differentiation of the Ce within the analyzed development stages. In this study, changes in the expression of proteins in the Ce at different postnatal developmental stages (postnatal days (P) 7, 90, and 637) could be observed. At the same time, an identification of proteins which are involved in cell migration and differentiation was possible. Especially proteins involved in processes of the biosynthesis and regulation, the dynamic organization of the cytoskeleton as well as chaperones showed a high amount of differentially expressed proteins between the analyzed dates. KW - messenger RNA KW - brain KW - cerebellum KW - development KW - proteomics KW - rat KW - proteins KW - adenosine kinase KW - coated vesicles KW - phosphatase 2A KW - expression KW - neuronal differentiation KW - human brain KW - hnRNP K KW - postnatal development KW - binding Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151347 VL - 16 SP - 21454 EP - 21485 ER - TY - JOUR A1 - Petrasek, Tomas A1 - Prokopova, Iva A1 - Sladek, Martin A1 - Weissova, Kamila A1 - Vojtechova, Iveta A1 - Bahnik, Stepan A1 - Zemanova, Anna A1 - Schönig, Kai A1 - Berger, Stefan A1 - Tews, Bjoern A1 - Bartsch, Dusan A1 - Schwab, Martin E. A1 - Sumova, Alena A1 - Stuchlik, Ales T1 - Nogo-A-deficient transgenic rats show deficits in higher cognitive functions, decreased anxiety, and altered circadian activity patterns JF - Frontiers in Behavioral Neuroscience N2 - Decreased levels of Nogo-A-dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knockdown laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity, and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A-deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A knockout rats and their circadian period (tau) did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality, and activity patterns. KW - AAPA KW - circadian rhythmicity KW - passive avoidance KW - Nogo-A KW - anhedonia KW - neophobia KW - morris water maze KW - place avoidance task KW - neurite outgrowth inhibitor KW - axon regeneration KW - synaptic plasticity KW - down regulation KW - traumatic brain injury KW - carousel maze KW - messenger RNA KW - genetic deletion Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117073 VL - 8 IS - 90 ER - TY - JOUR A1 - Reynolds, David A1 - Cliffe, Laura A1 - Förstner, Konrad U. A1 - Hon, Chung-Chau A1 - Siegel, T. Nicolai A1 - Sabatini, Robert T1 - Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei JF - Nucleic Acids Research N2 - Base J, beta-d-glucosyl-hydroxymethyluracil, is an epigenetic modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. J is enriched at sites involved in RNA polymerase ( RNAP) II initiation and termination. Reduction of J in Leishmania tarentolae via growth in BrdU resulted in cell death and indicated a role of J in the regulation of RNAP II termination. To further explore J function in RNAP II termination among kinetoplastids and avoid indirect effects associated with BrdU toxicity and genetic deletions, we inhibited J synthesis in Leishmania major and Trypanosoma brucei using DMOG. Reduction of J in L. major resulted in genome-wide defects in transcription termination at the end of polycistronic gene clusters and the generation of antisense RNAs, without cell death. In contrast, loss of J in T. brucei did not lead to genome-wide termination defects; however, the loss of J at specific sites within polycistronic gene clusters led to altered transcription termination and increased expression of downstream genes. Thus, J regulation of RNAP II transcription termination genome-wide is restricted to Leishmania spp., while in T. brucei it regulates termination and gene expression at specific sites within polycistronic gene clusters. KW - RNA-polymerase-II KW - variant surface glycoprotein KW - SWI2/SNF2-like protein KW - messenger RNA KW - polycistronic transcription KW - DNA glycosation KW - hela cells KW - gene expression KW - genome KW - 5-bromodeoxyuridine Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117863 VL - 42 IS - 15 ER - TY - JOUR A1 - Gewies, Andreas A1 - Gorka, Oliver A1 - Bergmann, Hanna A1 - Pechloff, Konstanze A1 - Petermann, Franziska A1 - Jeltsch, Katharina M. A1 - Rudelius, Martina A1 - Kriegsmann, Mark A1 - Weichert, Wilko A1 - Horsch, Marion A1 - Beckers, Johannes A1 - Wurst, Wolfgang A1 - Heikenwalder, Mathias A1 - Korn, Thomas A1 - Heissmeyer, Vigo A1 - Ruland, Juergen T1 - Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation JF - Cell Reports N2 - The paracaspase Malt1 is a central regulator of antigen receptor signaling that is frequently mutated in human lymphoma. As a scaffold, it assembles protein complexes for NF-kappa B activation, and its proteolytic domain cleaves negative NF-kappa B regulators for signal enforcement. Still, the physiological functions of Malt1-protease are unknown. We demonstrate that targeted Malt1-paracaspase inactivation induces a lethal inflammatory syndrome with lymphocyte-dependent neurodegeneration in vivo. Paracaspase activity is essential for regulatory T cell (Treg) and innate-like B cell development, but it is largely dispensable for overcoming Malt1-dependent thresholds for lymphocyte activation. In addition to NF-kappa B inhibitors, Malt1 cleaves an entire set of mRNA stability regulators, including Roquin-1, Roquin-2, and Regnase-1, and paracaspase inactivation results in excessive interferon gamma (IFN gamma) production by effector lymphocytes that drive pathology. Together, our results reveal distinct threshold and modulatory functions of Malt1 that differentially control lymphocyte differentiation and activation pathways and demonstrate that selective paracaspase blockage skews systemic immunity toward destructive autoinflammation. KW - helper T-cells KW - combined immunodeficiency KW - messenger RNA KW - roquin KW - mice KW - NF-KAPPA-B KW - lymphoid-tissue KW - activation KW - cleavage KW - mutations Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114627 VL - 9 IS - 4 ER - TY - JOUR A1 - Linder, Bastian A1 - Hirmer, Anja A1 - Gal, Andreas A1 - Rüther, Klaus A1 - Bolz, Hanno Jörn A1 - Winkler, Christoph A1 - Laggerbauer, Bernhard A1 - Fischer, Utz T1 - Identification of a PRPF4 Loss-of-Function Variant That Abrogates U4/U6.U5 Tri-snRNP Integration and Is Associated with Retinitis Pigmentosa N2 - Pre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNP factor PRPF4 in a patient with RP. The mutation affects a highly conserved arginine residue that is crucial for PRPF4 function. Introduction of a corresponding mutation into the zebrafish homolog of PRPF4 resulted in a complete loss of function in vivo. A series of biochemical experiments suggested that p.R192H disrupts the binding interface between PRPF4 and its interactor PRPF3. This interferes with the ability of PRPF4 to integrate into the tri-snRNP, as shown in a human cell line and in zebrafish embryos. These data suggest that the p.R192H variant of PRPF4 represents a functional null allele. The resulting haploinsufficiency of PRPF4 compromises the function of the tri-snRNP, reinforcing the notion that this spliceosomal particle is of crucial importance in the physiology of the retina. KW - zebrafish KW - embryos KW - immunoprecipitation KW - arginine KW - messenger RNA KW - spliceosomes KW - mutation KW - RNA splicing Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113663 ER -