TY - JOUR A1 - Shityakov, Sergey A1 - Nagai, Michiaki A1 - Ergün, Süleyman A1 - Braunger, Barbara M. A1 - Förster, Carola Y. T1 - The protective effects of neurotrophins and microRNA in diabetic retinopathy, nephropathy and heart failure via regulating endothelial function JF - Biomolecules N2 - Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted. KW - diabetic retinopathy KW - diabetes mellitus KW - microvascular complications KW - diabetic nephropathy KW - heart failure KW - microRNA KW - neurotrophins Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285966 SN - 2218-273X VL - 12 IS - 8 ER - TY - JOUR A1 - Šebeková, K. A1 - Stürmer, M. A1 - Fazeli, G. A1 - Bahner, U. A1 - Stäb, F. A1 - Heidland, A. T1 - Is vitamin D deficiency related to accumulation of advanced glycation end products, markers of inflammation, and oxidative stress in diabetic subjects? JF - BioMed Research International N2 - Objectives. In diabetes accumulated advanced glycation end products (AGEs) are involved in the striking cardiovascular morbidity/mortality. We asked whether a hypovitaminosis D associates with an increased formation and toxicity of AGEs in diabetes. Methods. In 276 diabetics (160M/116 F, age: 65.0 ± 13.4; 43 type 1,T1DM, and 233 type 2 patients, T2DM) and 121 nondiabetic controls (60 M/61 F; age: 58.6 ± 15.5 years) routine biochemistry, levels of 25-hydroxyvitamin D\(_{3}\) (25-(OH)D), skin autofluorescence (SAF), plasma AGE-associated fluorescence (AGE-FL), N\(^{ε}\) -(carboxymethyl) lysine (CML), soluble receptor for AGEs (sRAGE), soluble vascular adhesion protein-1 (sVAP-1), high sensitive C-reactive protein (hs-CRP), and renal function (eGFR) were determined. Results. In the diabetics SAF and AGE-Fl were higher than those of the controls and correlated with age, duration of diabetes, and degree of renal impairment. In T2DM patients but not in T1DM the age-dependent rise of SAF directly correlated with hs-CRP and sVAP-1. 25-(OH)D levels in diabetics and nondiabetics were lowered to a similar degree averaging 22.5 ng/mL. No relationship between 25-(OH)D and studied markers except for sVAP-1 was observed in the diabetics. Conclusion. In diabetics hypovitaminosis D does not augment accumulation of AGEs and studied markers of microinflammation and oxidative stress except for sVAP-1. KW - vascular adhesion protein-1 KW - end-stage renal failure KW - microvascular complications KW - cardiovascular disease KW - 1,25-dihydroxyvitamin D\(_{3}\) KW - serum 25-hydroxyvitamin D KW - skin autofluorescence KW - beta cell function KW - sensitive amine oxidase Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149197 VL - 2015 IS - 958097 ER -