TY - THES A1 - Kunz, Marcel T1 - Diffusion kinetics of organic compounds and water in plant cuticular model wax under the influence of diffusing barrier-modifying adjuvants T1 - Diffusionskinetiken organischer Verbindungen und Wasser in pflanzlichem kutikulärem Modellwachs unter dem Einfluss von diffundierenden, barriere-modifizierenden Adjuvantien N2 - To reach their target site, systemic pesticides must enter the plant from a spray droplet applied in the field. The uptake of an active ingredient (AI) takes place via the barrier-forming cuticular membrane, which is the outermost layer of the plant, separating it from the surrounding environment. Formulations are usually used which, in addition to the AI, also contain stabilizers and adjuvants. Adjuvants can either have surface-active properties or they act directly as barrier-modifying agents. The latter are grouped in the class of accelerating adjuvants, whereby individual variants may also have surface-active properties. The uptake of a pesticide from a spray droplet depends essentially on its permeability through the cuticular barrier. Permeability defines a combined parameter, which is the product of AI mobility and AI solubility within the cuticle. In recent decades, several tools have been developed that allowed the determination of individual parameters of organic compound penetration across the cuticular membrane. Nevertheless, earlier studies showed that mainly cuticular waxes are the barrier-determining component of the cuticular membrane and additionally, it was shown that mainly the very-long-chain aliphatic compounds (VLCAs) are responsible for establishing an effective barrier. However, the barrier-determining role of the individual VLCAs, being classified according to their respective functional groups, is still unknown. Therefore, the following objectives were pursued and achieved in this work: (1) A new ATR-FTIR-based approach was developed to measure the temperature-dependent real-time diffusion kinetics of organic models for active ingredients (AIs) in paraffin wax, exclusively consisting of very-long chain alkanes. (2) The developed ATR-FTIR approach was applied to determine the diffusion kinetics of self-accelerating adjuvants in cuticular model waxes of different VLCA composition. At the same time, wax-specific changes were recorded in the respective IR spectra, which provided information about the respective wax modification. (3) The ATR-FTIR method was used to characterize the diffusion kinetics, as well as to determine the wax-specific sorption capacities for an AI-modeling organic compound and water in cuticular model waxes after adjuvant treatment. Regarding the individual chemical compositions and structures, conclusions were drawn about the adjuvant-specific modes of action (MoA). In the first chapter, the ATR-FTIR based approach to determine organic compound diffusion kinetics in paraffin wax was successfully established. The diffusion kinetics of the AI modelling organic compounds heptyl parabene (HPB) and 4-cyanophenol (CNP) were recorded, comprising different lipophilicities and molecular volumes typical for AIs used in pesticide formulations. Derived diffusion coefficients ranged within 10-15 m2 s-1, thus being thoroughly higher than those obtained from previous experiments using an approach solely investigating desorption kinetics in reconstituted cuticular waxes. An ln-linear dependence between the diffusion coefficients and the applied diffusion temperature was demonstrated for the first time in cuticular model wax, from which activation energies were derived. The determined activation energies were 66.2 ± 7.4 kJ mol-1 and 56.4 ± 9.8 kJ mol-1, being in the expected range of already well-founded activation energies required for organic compound diffusion across cuticular membranes, which again confirmed the significant contribution of waxes to the cuticular barrier. Deviations from the assumed Fickian diffusion were attributed to co-occurring water diffusion and apparatus-specific properties. In the second and third chapter, mainly the diffusion kinetics of accelerating adjuvants in the cuticular model waxes candelilla wax and carnauba wax were investigated, and simultaneously recorded changes in the wax-specific portion of the IR spectrum were interpreted as indications of plasticization. For this purpose, the oil derivative methyl oleate, as well as the organophosphate ester TEHP and three non-ionic monodisperse alcohol ethoxylates (AEs) C12E2, C12E4 and C12E6 were selected. Strong dependence of diffusion on the respective principal components of the mainly aliphatic waxes was demonstrated. The diffusion kinetics of the investigated adjuvants were faster in the n-alkane dominated candelilla wax than in the alkyl ester dominated carnauba wax. Furthermore, the equilibrium absorptions, indicating equilibrium concentrations, were also higher in candelilla wax than in carnauba wax. It was concluded that alkyl ester dominated waxes feature higher resistance to diffusion of accelerating adjuvants than alkane dominated waxes with shorter average chain lengths due to their structural integrity. This was also found either concerning candelilla/policosanol (n-alcohol) or candelilla/rice bran wax (alkyl-esters) blends: with increasing alcohol concentration, the barrier function was decreased, whereas it was increased with increasing alkyl ester concentration. However, due to the high variability of the individual diffusion curves, only a trend could be assumed here, but significant differences were not shown. The variability itself was described in terms of fluctuating crystalline arrangements and partial phase separation of the respective wax mixtures, which had inevitable effects on the adjuvant diffusion. However, diffusion kinetics also strongly depended on the studied adjuvants. Significantly slower methyl oleate diffusion accompanied by a less pronounced reduction in orthorhombic crystallinity was found in carnauba wax than in candelilla wax, whereas TEHP diffusion was significantly less dependent on the respective wax structure and therefore induced considerable plasticization in both waxes. Of particular interest was the AE diffusion into both waxes. Differences in diffusion kinetics were also found here between candelilla blends and carnauba wax. However, these depended equally on the degree of ethoxylation of the respective AEs. The lipophilic C12E2 showed approximately Fickian diffusion kinetics in both waxes, accompanied by a drastic reduction in orthorhombic crystallinity, especially in candelilla wax, whereas the more hydrophilic C12E6 showed significantly retarded diffusion kinetics associated with a smaller effect on orthorhombic crystallinity. The individual diffusion kinetics of the investigated adjuvants sometimes showed drastic deviations from the Fickian diffusion model, indicating a self-accelerating effect. Hence, adjuvant diffusion kinetics were accompanied by a distinct initial lag phase, indicating a critical concentration in the wax necessary for effective penetration, leading to sigmoidal rather than to exponential diffusion kinetics. The last chapter dealt with the adjuvant-affected diffusion of the AI modelling CNP in candelilla and carnauba wax. Using ATR-FTIR, diffusion kinetics were recorded after adjuvant treatment, all of which were fully explicable based on the Fickian model, with high diffusion coefficients ranging from 10-14 to 10-13 m2 s-1. It is obvious that the diffusion coefficients presented in this work consistently demonstrated plasticization induced accelerated CNP mobilities. Furthermore, CNP equilibrium concentrations were derived, from which partition- and permeability coefficients could be determined. Significant differences between diffusion coefficients (mobility) and partition coefficients (solubility) were found on the one hand depending on the respective waxes, and on the other hand depending on treatment with respective adjuvants. Mobility was higher in candelilla wax than in carnauba wax only after methyl oleate treatment. Treatment with TEHP and AEs resulted in higher CNP mobility in the more polar alkyl ester dominated carnauba wax. The partition coefficients, on the other hand, were significantly lower after methyl oleate treatment in both candelilla and carnauba wax as followed by TEHP or AE treatment. Models were designed for the CNP penetration mode considering the respective adjuvants in both investigated waxes. Co-penetrating water, which is the main ingredient of spray formulations applied in the field, was likely the reason for the drastic differences in adjuvant efficacy. Especially the investigated AEs favored an enormous water uptake in both waxes with increasing ethoxylation level. Surprisingly, this effect was also found for the lipophilic TEHP in both waxes. This led to the assumption that the AI permeability is not exclusively determined by adjuvant induced plasticization, but also depends on a “secondary plasticization”, induced by adjuvant-attracted co-penetrating water, consequently leading to swelling and drastic destabilization of the crystalline wax structure. The successful establishment of the presented ATR-FTIR method represents a milestone for the study of adjuvant and AI diffusion kinetics in cuticular waxes. In particular, the simultaneously detectable wax modification and, moreover, the determinable water uptake form a perfect basis to establish the ATR-FTIR system as a universal screening tool for wax-adjuvants-AI-water interaction in crop protection science. N2 - Um ihren Zielort zu erreichen, müssen systemische Pestizide aus einem auf dem Feld ausgebrachten Sprühtropfen in die Pflanze gelangen. Die Aufnahme eines Wirkstoffs (AI) erfolgt über die barrierebildende Kutikularmembran, die äußerste Schicht der Pflanze, die sie von der Umgebung trennt. In der Regel werden Formulierungen verwendet, die neben dem AI auch Stabilisatoren und Adjuvantien enthalten. Adjuvantien können entweder oberflächenaktive Eigenschaften haben oder sie wirken direkt als barrieremodifizierende Substanzen. Letztere werden in der Klasse der beschleunigenden Adjuvantien zusammengefasst, wobei einzelne Varianten auch oberflächenaktive Eigenschaften haben können. Die Aufnahme eines Pestizids aus einem Sprühtropfen hängt im Wesentlichen von seiner Durchlässigkeit durch die kutikuläre Barriere ab. Die Permeabilität ist ein kombinierter Parameter, der sich aus der Mobilität und der Löslichkeit des Wirkstoffs in der Kutikula ergibt. In den letzten Jahrzehnten wurden mehrere Methoden entwickelt, die die Bestimmung einzelner Parameter der Permeation organischer Verbindungen durch die Kutikularmembran ermöglichen. Frühere Studien zeigten jedoch, dass hauptsächlich kutikuläre Wachse die barrierebestimmende Komponente der Kutikula darstellen, und darüber hinaus wurde gezeigt, dass hauptsächlich die sehr langkettigen aliphatischen Verbindungen (VLCAs) für die Errichtung einer wirksamen Barriere verantwortlich sind. Die Rolle der einzelnen VLCAs, die nach ihren jeweiligen funktionellen Gruppen klassifiziert werden, ist jedoch in Bezug auf die Bestimmung der Barriereeigenschaften noch unbekannt. Daher wurde in dieser Arbeit folgende Ziele verfolgt und erreicht: (1) Ein neuer ATR-FTIR-basierter Ansatz wurde entwickelt, um die temperaturabhängige Echtzeit-Diffusionskinetik von organischen Modellen für Wirkstoffe (AI) in ausschließlich aus Alkanen bestehendem Paraffinwachs zu messen. (2) Der entwickelte ATR-FTIR-Ansatz wurde zur Bestimmung der Diffusionskinetik von selbstbeschleunigenden Adjuvantien in kutikulären Modellwachsen unterschiedlicher VLCA-Zusammensetzung angewendet. Gleichzeitig wurden wachsspezifische Veränderungen in den jeweiligen IR-Spektren aufgezeichnet, welche Informationen über die jeweilige Wachsmodifikation lieferten. (3) Die ATR-FTIR-Methode wurde zur Charakterisierung der Diffusionskinetik, sowie zur Bestimmung der wachsspezifischen Sorptionskapazitäten für eine AI-modellierende organische Verbindung und von Wasser in kutikulären Modellwachsen nach Adjuvans-Behandlung verwendet. Im Hinblick auf die einzelnen chemischen Zusammensetzungen und Strukturen wurden Rückschlüsse auf die adjuvansspezifischen Wirkweisen (MoA) gezogen. Im ersten Kapitel wurde der ATR-FTIR-basierte Ansatz zur Bestimmung der Diffusionskinetik organischer Verbindungen in Paraffinwachs erfolgreich etabliert. Es wurde die Diffusionskinetik der organischen AI-Modellverbindungen Heptylparaben (HPB) und 4-Cyanophenol (CNP) aufgezeichnet, die unterschiedliche Lipophilitäten und Molekülvolumina aufweisen, wie sie für AIs in Pestizidformulierungen typisch sind. Die abgeleiteten Diffusionskoeffizienten lagen im Bereich von 10-15 m2 s-1 und waren damit höher als die zuvor in rekonstituierten kutikulären Wachsen beobachteten Diffusionskoeffizienten. Zum ersten Mal wurde eine ln-lineare Abhängigkeit zwischen den Diffusionskoeffizienten und der angewandten Diffusionstemperatur in kutikulärem Modellwachs nachgewiesen, aus der schließlich Aktivierungsenergien abgeleitet wurden. Die ermittelten Aktivierungsenergien betrugen 66.2 ± 7.4 kJ mol-1 und 56.4 ± 9,8 kJ mol-1 und lagen damit im erwarteten Bereich der bereits gut begründeten Aktivierungsenergien, die für die Diffusion organischer Verbindungen durch kutikuläre Membranen erforderlich sind. Dies bestätigte abermals den signifikanten Beitrag der Wachse zur kutikulären Barriere. Abweichungen von der angenommenen Fick'schen Diffusion wurden auf die gleichzeitig stattfindende Wasserdiffusion und gerätespezifische Artefakte zurückgeführt. Im zweiten und dritten Kapitel wurde vor allem die Diffusionskinetik von beschleunigenden Adjuvantien in den kutikulären Modellwachsen Candelillawachs und Carnaubawachs untersucht und gleichzeitig aufgezeichnete Veränderungen im wachspezifischen Teil des IR-Spektrums als Hinweise auf eine Plastifizierung interpretiert. Zu diesem Zweck wurden das Ölderivat Methyloleat, sowie der Organophosphatester TEHP und drei nichtionische monodisperse Alkoholethoxylate (AEs) C12E2, C12E4 und C12E6 ausgewählt. Es wurde eine starke Abhängigkeit der Adjuvansdiffusion von den jeweiligen Hauptkomponenten der hauptsächlich aliphatisch strukturierten Wachse nachgewiesen. So war die Diffusionskinetik der untersuchten Adjuvantien in dem hauptsächlich aus n-Alkanen bestehenden Candelillawachs schneller als in dem von Alkylestern dominierten Carnaubawachs. Darüber hinaus waren die Gleichgewichtsabsorptionen, die auf Gleichgewichtskonzentrationen hinweisen, in Candelillawachs ebenfalls höher als in Carnaubawachs. Daraus wurde gefolgert, dass Wachse mit hohen Alkylesteranteilen aufgrund ihrer strukturellen Integrität einen höheren Widerstand gegen die Diffusion von beschleunigenden Adjuvantien aufweisen als Wachse mit kürzeren durchschnittlichen Kettenlängen. Dies wurde auch bei Candelilla/Policosanol- (n-Alkohol) oder Candelilla/Reiskleiewachs-Mischungen (Alkylester) festgestellt: Mit steigender Alkoholkonzentration nahm die Barrierefunktion ab, während sie mit steigender Alkylesterkonzentration zunahm. Aufgrund der hohen Variabilität der einzelnen Diffusionskurven konnte hier jedoch nur ein Trend vermutet werden, signifikante Unterschiede zeigten sich jedoch nicht. Die Variabilität selbst wurde mit schwankenden kristallinen Anordnungen und teilweiser Phasentrennung der jeweiligen Wachsmischungen erklärt, die sich zwangsläufig auf die Diffusion der Adjuvantien auswirkten. Die Diffusionskinetik hing jedoch auch stark von den untersuchten Adjuvantien ab. In Carnaubawachs wurde eine deutlich langsamere Methyloleat-Diffusion festgestellt, die mit einer weniger ausgeprägten Verringerung der orthorhombischen Kristallinität einherging als in Candelillawachs, während die TEHP-Diffusion deutlich weniger von der jeweiligen Wachsstruktur abhängig war und in beiden Wachsen eine erhebliche Plastifizierung bewirkte. Von besonderem Interesse war die AE-Diffusion in den untersuchten Wachsen. Auch hier wurden Unterschiede in der Diffusionskinetik zwischen Candelillamischungen und Carnaubawachs festgestellt. Diese hingen jedoch gleichermaßen vom Ethoxylierungsgrad der jeweiligen AEs ab. Das lipophile C12E2 zeigte in beiden Wachsen eine annähernd Fick‘sche Diffusionskinetik, die mit einer drastischen Verringerung der orthorhombischen Kristallinität einherging, insbesondere im Candelillawachs, während das hydrophilere C12E6 eine deutlich verzögerte Diffusionskinetik zeigte, die mit einer geringeren Auswirkung auf die orthorhombische Kristallinität einherging. Die individuellen Diffusionskinetiken der untersuchten Adjuvantien zeigten teilweise drastische Abweichungen vom Fick‘schen Diffusionsmodell, was auf einen selbstbeschleunigenden Effekt hindeutet. Die Diffusionskinetik der Adjuvantien wurde von einer ausgeprägten anfänglichen Verzögerungsphase begleitet, die auf das Erreichen einer kritischen Konzentration im Wachs hindeutet. Es wird angenommen, dass aufgrund der initialen Verzögerungsphase letztlich sigmoidale, statt Fick’sche Diffusionskinetiken vorlagen. Das letzte Kapitel befasste sich mit der adjuvansbeeinflussten Diffusion der für Wirkstoffe modellhaften organischen Substanz CNP in Candelilla- und Carnaubawachs. Mittels ATR-FTIR wurden Diffusionskinetiken nach Adjuvans-Behandlung aufgezeichnet, die alle auf der Grundlage des Fick‘schen Modells vollständig erklärbar waren, einhergehend mit hohen Diffusionskoeffizienten von 10-14 bis 10-13 m2 s-1. Es ist offensichtlich, dass die in dieser Arbeit vorgestellten Diffusionskoeffizienten durchweg eine durch die Plastifizierung bedingte erhöhte CNP-Mobilität belegen. Darüber hinaus wurden CNP-Gleichgewichtskonzentrationen abgeleitet, aus denen Verteilungs- und Permeabilitätskoeffizienten bestimmt werden konnten. Signifikante Unterschiede zwischen Diffusionskoeffizienten (Mobilität) und Verteilungskoeffizienten (Löslichkeit) wurden zum einen in Abhängigkeit von den jeweiligen Wachsen und zum anderen in Abhängigkeit von den jeweiligen Adjuvantien festgestellt. Die CNP-Mobilität war in Candelillawachs nur nach Behandlung mit Methyloleat höher als in Carnaubawachs. Die Behandlung mit TEHP und AEs führte zu einer höheren CNP-Mobilität in dem polaren, von Alkylestern dominierten Carnaubawachs. Die Verteilungskoeffizienten hingegen waren nach der Behandlung mit Methyloleat sowohl in Candelilla- als auch in Carnaubawachs deutlich niedriger als nach der Behandlung mit TEHP oder AE. Es wurden Modelle für den CNP-Penetrationsmodus unter Berücksichtigung der jeweiligen Adjuvantien in den beiden untersuchten Wachsen entwickelt. Der Grund für die drastischen Unterschiede in der Wirksamkeit der Adjuvantien liegt wahrscheinlich im Ko-Penetrieren von Wasser, dem Hauptbestandteil der auf dem Feld angewandten Spritzformulierungen. Insbesondere die untersuchten AEs begünstigten eine enorme Wasseraufnahme in beiden Wachsen mit zunehmendem Ethoxylierungsgrad. Überraschenderweise wurde dieser Effekt auch für das lipophile TEHP in beiden Wachsen gefunden. Dies führte zu der Vermutung, dass die AI-Permeabilität nicht ausschließlich durch die adjuvansinduzierte Plastifizierung bestimmt wird, sondern auch von einer "sekundären Plastifizierung" abhängt, die durch die Ko-Penetration von Wasser induziert wird und so zur Quellung und drastischen Destabilisierung der kristallinen Wachsstruktur führt. Die erfolgreiche Etablierung der vorgestellten ATR-FTIR-Methode stellt einen Meilenstein für die Untersuchung der Diffusionskinetik von Adjuvantien und AIs in kutikulären Wachsen dar. Insbesondere die gleichzeitig nachweisbare Wachsmodifikation und darüber hinaus die bestimmbare Wasseraufnahme bilden eine perfekte Grundlage, um das ATR-FTIR-System als universelles Screening-Tool für Wachs-Adjuvans-AI-Wasser-Interaktionen in der Pflanzenschutzwissenschaft zu etablieren. KW - Pflanzen KW - Kutikula KW - Adjuvans KW - Aktivierungsenergie KW - ATR-FTIR KW - Diffusion coefficient KW - Pesticide KW - wax Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274874 ER - TY - THES A1 - Hansjakob, Anton T1 - The role of cuticular waxes in the prepenetration processes of Blumeria graminis f.sp. hordei T1 - Der Einfluss kutikulärer Wachse auf die Präpenetrationsprozesse von Blumeria graminis f.sp. hordei N2 - Der obligat biotrophe Pilz Blumeria graminis f.sp. hordei gilt als Erreger des Gerstenmehltaus, einer destruktiven Erkrankung der Gerste (Hordeum vulgare). Als Folge des Befalls mit B. graminis f.sp. hordei drohen erhebliche Ernteeinbußen. Das kutikuläre Wachs von Gerstenblättern besteht hauptsächlich aus primären Alkoholen (80%), Alkylestern (10%) sowie aus geringfügig vorkommenden Bestandteilen wie Fettsäuren (2%), Alkanen (2%) und Aldehyden (1%). Der initiale Kontakt der asexuellen und durch die Luft verbreiteten Konidien findet auf der Blattoberfläche in einer Umgebung statt, die von den kutikulären Wachsen bestimmt ist, welche Keimung und Differenzierung stimulieren. Während der Keimungs- und Differenzierungsphase durchlaufen die Konidien eine sequenzielle Morphogenese, die so genannten Präpenetrationsprozesse. Dabei bilden die Konidien auf der Pflanzenoberfläche zunächst einen primären, kurzen und im weiteren Verlauf einen sekundären, elongierten Keimschlauch aus. Im Anschluss daran schwillt dieser an und wird letztlich zu einem septierten Appressorium differenziert. Mit Hilfe des Appressoriums dringt der Pilz dann in die Epidermiszelle der Wirtspflanze ein und bildet ein initiales Haustorium, das die Ernährung des Pilzes sicherstellt. Um den Einfluss von einzelnen Wachsbestandteilen der Wirtspflanze auf die Präpenetrationsprozesse systematisch zu untersuchen wurde ein neues in vitro System auf der Basis von Formvar®-Harz etabliert. Dieses System ermöglicht die Erzeugung homogener Oberflächen als Substrate für den Pilz, bei denen sowohl die aufgelagerten Mengen als auch die Oberflächenhydrophobizität unabhängig von den getesteten Substanzklassen und Kettenlängen der Moleküle hochgradig reproduzierbar sind. In diesem System haben langkettige Aldehyde die Keimung und die Differenzierung von B. graminis f.sp. hordei Konidien am wirksamsten induziert, wobei die Raten der Appressorienbildung in Abhängigkeit von der Konzentration und der Kettenlänge im Vergleich zu n-Hexacosanal (C26), das sich als am effektivsten zeigte, abnahmen (C22<C28>>C30). Die getesteten gerad- und ungeradzahligen Alkane (C24-C33), Fettsäuren (C20-C28), Alkylester (C40-C44) und primären Alkohole (C20-C30) hatten keinen signifikanten Einfluss auf die Keimung und die Appressorienbildung des Pilzes. Der primäre Alkohol n-Hexacosanol (C26) stellte hierbei eine Ausnahme dar, da er die Keimung und die Bildung des Appressorium-Keimschlauchs signifikant erhöhte. Um die Rolle von langkettigen Aldehyden auf einer intakten Pflanzenoberfläche in vivo genauer zu untersuchen wurden B. graminis f.sp. hordei Konidien auf Blätter von glossy11 Mutanten der Nicht-Wirtspflanze Mais (Zea mays) inokuliert. Anders als der Wildtyp weisen glossy11 Blätter keine langkettigen Aldehyde auf. Auf glossy11 Blättern keimten 60% der B. graminis f.sp. hordei Konidien nicht und nur 10% der Konidien entwickelten ein reifes Appressorium, was einer dreimal geringeren Rate als auf Wildtyp-Blättern entspricht. Durch das Besprühen von glossy11 Blätter mit synthetischem n-Hexacosanal oder mit Wachs des Wildtyps wurden die pilzlichen Präpenetrationsprozesse wieder vollständig durchlaufen. Wurden im Gegensatz dazu Blätter des Mais-Wildtyps mit nicht induzierenden n-Alkanen, primären Alkoholen oder langkettigen Fettsäuren besprüht, konnte das den Aldehyd-defizienten Phänotyp von glossy11 imitieren. Während der Präpenetrationsprozesse wird ein Appressorium gebildet, wobei es sich hierbei um eine neu gebildete Zelle handelt. Die Keimung und die anschließende Morphogenese sind wichtige Schritte in der Etablierung der pilzlichen Infektionsstrukturen. Da diese Prozesse in einigen phytopathogenen Pilzen mit dem Zellzyklus gekoppelt sind wurde untersucht, inwieweit die Präpenetrationsprozesse von B. graminis f.sp. hordei mit dem Verlauf des Zellzykluses synchronisiert sind. Hierfür wurde eine Methode basierend auf DAPI (4,6-diamidino-2-phenylindole) zur Färbung der Zellkerne für fixierte Präparate von B. graminis f.sp. hordei Konidien entwickelt. Mittels eines pharmakologischen Ansatzes war es auf diese Weise erstmals möglich die Abhängigkeit der Präpenetrationsprozesse von der Mitose in vivo und in vitro zu verfolgen. Sechs Stunden nach der Inokulation trat nach Ausbildung des Appressorium-Keimschlauchs eine Mitose in der einkernigen Konidie auf. Die Hemmung der S-Phase mit Hydroxyharnstoff oder die Hemmung der M-Phase mit Benomyl verhinderten eine Bildung des Appressoriums, nicht aber die Entwicklung des Appressorium-Keimschlauchs. Diese Ergebnisse weisen darauf hin, dass die Mitose und eine abgeschlossene Zytokinese notwendige Voraussetzungen für die Appressoriumsbildung, jedoch nicht für die Morphogenese der Konidie, sind. Als Reaktion auf bestimmte Wachsbestandteile der Wirtspflanze werden pilzliche Gene, die während der Präpenetrationsprozesse eine wichtige Rolle spielen können, differenziell exprimiert. Um solche Gene zu identifizieren wurden cDNA Klonbibliotheken mittels der suppression subtractive hybridization (SSH) 22 Minuten nach der Inokulation erstellt. Das auf Formvar®-Harz basierende in vitro System ermöglichte die selektive Anreicherung von cDNA Sequenzen aus B. graminis f.sp. hordei Konidien, die auf n-Hexacosanal beschichteten Oberflächen inokuliert wurden. Aus einer Reihe von Kandidaten wurde eine cDNA-Sequenz identifiziert, die sowohl auf Gerstenblättern als auch auf mit n-Hexacosanal oder extrahiertem Gerstenwachs beschichteten Oberflächen hochreguliert war. Mittels 3’ und 5’ RACE wurde das n-Hexacosanal induzierte Transkript kloniert. Diese cDNA-Sequenz wies keine Homologien zu bekannten Genen, die Funktionen in der pilzlichen Entwicklung und der Ausbildung von Pathogenität in Pflanzen haben, auf. N2 - The obligate biotrophic fungus Blumeria graminis f.sp. hordei is the causative agent of barley powdery mildew, a destructive foliar disease. The fungus infests barley (Hordeum vulgare), an important crop plant, which causes remarkable yield losses. Leaf cuticular wax of barley consists mainly of primary alcohols (80%), alkyl esters (10%) and minor constituents such as fatty acids (2%), alkanes (2%) and aldehydes (1%). The asexual airborne conidia have an initial contact to the leaf surface, in an environment dominated by cuticular waxes, which trigger germination and differentiation. The conidia undergo a sequential morphogenesis during that phase, the so-called prepenetration processes. The conidium initially forms a short primary germ tube, followed by a secondary elongated germ tube, which swells and finally forms a septate appressorium. The fungal appressorium infests the epidermal cell of the host plant and establishes an initial haustorium, the feeding structure of the fungus. In order to assess the effects of single host plant wax constituents on the prepenetration processes a novel in vitro assay based on Formvar® resin was established. This system permits the setting up of homogeneous surfaces as substrata, at which the adsorbed amounts and the surface hydrophobicity are highly reproducible, independently of the tested substance classes and chain lengths of the molecules. In this system, very-long-chain aldehydes promoted germination and differentiation of B. graminis f.sp. hordei conidia. The appressorium formation rates were decreasing in a concentration and chain-length dependent manner compared to n-hexacosanal (C26), which was the most effective aldehyde (C22<C28>>C30). The tested alkanes with even and odd numbers (C24-C33), fatty acids (C20-C28), alkyl esters (C40-C44) and primary alcohols (C20-C30) did not induce germination and appressorium formation. The primary alcohol n-hexacosanol (C26) was an exception, as it was capable of significantly stimulating conidial germination and appressorial germ tube formation. To elucidate the impact of very-long-chain aldehydes on an intact plant surface in vivo, B. graminis f.sp. hordei conidia were inoculated on glossy11 mutant leaves of the non-host plant maize (Zea mays), which are - unlike the wildtype - completely devoid of very-long-chain aldehydes. On glossy11 leaves 60% of B. graminis f.sp. hordei conidia remained ungerminated and 10% developed a mature appressorium, which is three times less than on wildtype plants. Spraying of synthetic n-hexacosanal or wildtype leaf wax on glossy11 leaves fully restored the fungal prepenetration processes. In contrast, spraying of non-inducing n-alkanes, primary alcohols or very-long-chain fatty acids on wildtype leaves of maize mimicked the aldehyde deficient phenotype of glossy11. During the prepenetration processes an appressorium is formed, which is a newly formed specialized cell. Germination and subsequent morphogenesis are linked to the cell cycle in certain phytopathogenic fungi. It was investigated to what extent the prepenetration processes of B. graminis f.sp. hordei are synchronized with cell cycle progression. Hence, a distinct staining procedure of nuclei for fixed samples of B. graminis f.sp. hordei conidia based on DAPI (4,6-diamidino-2-phenylindole) was developed. In combination with a pharmacological approach it was possible to trace mitosis in dependency of conidial germination and differentiation in vivo and in vitro. The uninucleate conidium germinated and after formation of the appressorial germ tube, a single mitosis occurred in the primordial conidium six hours after inoculation. The inhibition of S-phase with hydroxyurea or M-phase with benomyl prevented appressorium formation, but not the development of the appressorial germ tube. These results indicate that mitosis and a successful cytokinesis are necessary prerequisites for the appressorium formation but not for conidial morphogenesis. In order to identify genes that are expressed in response to certain host plant wax constituents, which may be critical for the prepenetration phase, cDNA clone libraries were constructed by suppression subtractive hybridization (SSH) after inoculation. The Formvar® resin based in vitro system provided a stable platform to enrich cDNA sequences that were expressed in B.graminis f.sp. hordei conidia incubated on n-hexacosanal coated surfaces for 22 minutes. Among various candidates, a cDNA sequence was identified, which was upregulated on barley leaves and on surfaces coated with n-hexacosanal or extracted barley leaf wax. The hexacosanal responsive transcript was cloned by 3’ and 5’ RACE. The cDNA sequence showed no homologies to genes of known function in fungal development and fungal pathogenicity in plants. KW - . KW - Gerste KW - Erysiphe graminis KW - Aldehyde KW - Kutikularwachs KW - barley KW - Blumeria graminis KW - very-long-chain aldehydes KW - wax KW - glossy11 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72840 ER - TY - THES A1 - Leide, Jana T1 - Cuticular Wax Biosynthesis of Lycopersicon esculentum and Its Impact on Transpiration Barrier Properties during Fruit Development T1 - Untersuchungen zur kutikulären Wachsbiosynthese und deren Bedeutung als Transpirationsbarriere während der Fruchtentwicklung von Lycopersicon esculentum N2 - Cuticular waxes cover all above-ground growing parts of plants. They provide the outermost contact zone between plants and their environment and play a pivotal role in limiting transpirational water loss across the plant surface. The complex mechanisms in cuticular wax biosynthesis conferring proper barrier function still remain to be elucidated. The present study focuses on biosynthetic pathways in wax formation, cuticular wax accumulation and composition and its impact on the epidermal barrier property of the intact system of the astomatous tomato fruit (Lycopersicon esculentum Mill.). Fruits of all developmental stages of the wild type cultivar MicroTom and its lecer6 mutant defective in a β-ketoacyl-CoA synthase involved in very-long-chain fatty acid elongation were analyzed. This 'reverse genetic' approach clarified the importance of the β-ketoacyl-CoA synthase LeCER6 for epidermal barrier property in vivo on the biochemical-analytical level, on the transcriptional level and, furthermore, on the physiological level comparatively between MicroTom wild type and MicroTom lecer6. Surfaces of MicroTom wild type and MicroTom lecer6 fruits showed similar patterns of quantitative wax accumulation, but differed considerably in the permeance for water. Qualitative analyses of the chemical composition of fruit cuticular waxes in the course of fruit development revealed the meaning of the β-ketoacyl-CoA synthase deficiency in the lecer6 mutant. Fruits of this mutant exhibited a distinct decrease in the proportion of n-alkanes of chain lengths > C28. Moreover, a concomitant increase in pentacyclic triterpenoids became discernible in the mature green fruit stage of the mutant. Since quantitative changes of the cutin matrix were not sufficient to affect transpiration barrier properties of the lecer6 mutant presumably the shift in cuticular wax biosynthesis of the lecer6 mutant is responsible for the observed increase of water permeance. In order to investigate the molecular basis of wax formation, a microarray experiment was established that allows the simultaneous and comprehensive analysis of the timing and abundance of transcriptional changes in MicroTom wild type and MicroTom lecer6. This microarray consists of 167 oligonucleotides corresponding to EST and gene sequences of tomato potentially participating in wax biosynthesis, wax modification, transport processes and stress responsiveness. These parameters were correlated with the course of fruit development. This comparison of gene expression patterns showed a variety of differential expressed transcripts encoding for example lipid transfer proteins and the dehydrin TAS14. On the basis of these findings, it can be proposed that diverse regulatory mechanisms like lipid transfer processes or osmotic stress response are affected by the LeCER6 deficiency, which is primarily accompanied by an impaired water barrier property of the fruit cuticle. This present study correlates the continuous increase of LeCer6 gene expression and the accumulation of very-long-chain n-alkanes within the cuticular waxes during the transition from the immature green to the early breaker fruit phase displaying a developmental regulation of the cuticular wax biosynthesis. Organ-specific wax biosynthesis resulted in different cuticular wax pattern in tomato fruits and leaves. Moreover, in contrast to the fruits, LeCER6-deficient leaves showed a significantly reduced wax accumulation, mainly due to a decrease of n-alkanes with chain lengths > C30, while the proportion of pentacyclic triterpenoids were not affected. Deduced from these biochemical-analytical data on tomato fruits and leaves LeCER6 was characterized as a key enzyme in VLCFA biosynthetic pathway responsible for cuticular wax accumulation. In silico analysis of the LeCER6 sequence revealed the presence of two putative transmembrane domains in the N-terminal position. In addition, highly conserved configurations of catalytic residues in the active site of the enzyme were observed, which are probably essential to its overall structure and function in the fatty acid elongation process. High sequence homology of LeCER6 to the very-long-chain condensing enzymes GhCER6 of Gossypium hirsutum L. and AtCER6 of Arabidopsis thaliana (L.) Heynh. was found, which might be a good evidence for similar biochemical functions. Apart from developmental regulation of the cuticular wax biosynthesis, environmental factors influenced the cuticular wax coverage of tomato fruits. Mechanical removal of epicuticular fruit wax evoked large-scale modifications of the quantitative and qualitative wax composition, such as a reduction of aliphatic wax components, and therewith affected the cuticular water permeability. A subsequent regeneration event was included in the regular wax biosynthesis process and led to the compensation of the detached wax amounts and increased the water barrier properties of the cuticular membrane again. In contrast, water-limited conditions had only minor impact on alterations in cuticular wax biosynthesis and, consequently, on the permeance for water of tomato fruits. Floral organ fusion and conditional sterility, as observed in this study, are caused as pleiotropic effects in cell-cell signaling by the loss-of-function mutation in LeCER6. These findings corroborated the functional impact of LeCER6 on the epidermal integrity and are consistent with the current knowledge on eceriferum mutants of Arabidopsis. Investigations of phenotypic and biochemical characteristics of tomato fruits allowed a broader system-orientated perspective of the fruit development of MicroTom wild type and its lecer6 mutant. These analyses highlight more precisely alterations in the fruit surface area, fresh and dry weight, epidermal cell density, photosynthetic activity or glucose content in the course of fruit development. The differences between MicroTom wild type and MicroTom lecer6 characterize very well the large-scale consequences of the LeCER6 deficiency on the physiological status of tomato fruits. Moreover, the results clearly show a part of the genetic controlled network that governs tomato fruit metabolism and mediates extensive changes of the tomato fruit life cycle. The analyses of the stem scar tissue of the tomato fruit revealed a complex set of responses caused by the harvesting process in detail. Throughout storage of the tomato fruits barrier properties were attributed to the suberized stem scar tissue in regard to water loss limitation and reduction of the fungal infection rate. Thereby the endogenous level of abscisic acid was found to be involved in the molecular signaling pathway that regulates the de novo formation of this tissue. For the first time, the chemical composition and physiological importance could be correlated with molecular changes at the transcriptional level during suberization of the stem scar of tomato fruits. In conclusion, this work indicates a novel intact model system for an integrative functional approach for plant barrier properties that was successfully established and carefully studied. The results highlight correlations between wax biosynthesis, distribution of cuticular waxes, and its relevance on the transpirational water loss across the plant surface and, thus, promote the global understanding of plant cuticle biology. N2 - Kutikuläre Wachse bedecken alle oberirdischen Pflanzenteile und stellen somit die Kontaktzone zwischen Pflanzen und ihrer Umwelt dar. Zudem spielen sie eine entscheidende Rolle für den Schutz der Pflanzen vor unkontrolliertem Wasserverlust. Die komplexen Mechanismen der Wachsbiosynthese, die zur dieser Barrierefunktion beitragen, sind jedoch noch weitgehend unaufgeklärt. Die vorliegende Arbeit untersucht Biosynthesewege von kutikulären Wachsen, ihre chemische Beschaffenheit sowie deren funktionelle Bedeutung als Transpirationsbarriere an dem intakten System der astomatären Tomatenfrucht (Lycopersicon esculentum Mill.). Untersuchungen wurden dabei an Früchten unterschiedlicher Entwicklungsstadien des Tomatenkultivars MicroTom Wildtyp und dessen lecer6 Mutante durchgeführt. Die lecer6 Mutante ist durch einen genetisch determinierten Defekt in der β-Ketoacyl-CoA Synthase LeCER6 unfähig zur Verlängerung von sehr langkettigen Fettsäuren. Durch diesen 'reverse genetic' Ansatz wurde der Einfluss der β-Ketoacyl-CoA Synthase LeCER6 auf die Barrierefunktion der Epidermis zunächst in vivo auf der biochemisch-analytischen und physiologischen Ebene vergleichend zwischen MicroTom Wildtyp und MicroTom lecer6 analysiert. Daran schlossen sich Untersuchungen auf transkriptioneller Ebene an. Die den Früchten von MicroTom Wildtyp und der lecer6 Mutante aufgelagerten Wachse unterscheiden sich quantitativ nur wenig, weisen hingegen deutliche Unterschiede in der qualitativen Zusammensetzung und den Wasserleitwerten auf. Die Analyse der chemischen Zusammensetzung der kutikulären Wachse zeigte im Verlauf der Fruchtentwicklung, dass die Defizienz in der β-Ketoacyl-CoA Synthase LeCER6 eine Abnahme des n-Alkananteils in den Wachsen ab einer Kettenlängen > C28 bewirkt, was bereits im Stadium der reifen grünen Früchte zu erkennen ist. Die in der lecer6 Mutante vermehrt eingelagerten pentazyklischen Triterpenoide können die Transpirationsbarriereeigenschaft der aliphatischen n-Alkane nicht adäquat ersetzen. Ein möglicher Einfluss der ebenso untersuchten Kutinmatrix der Tomatenfrucht konnte ausgeschlossen werden. Für eine umfangreiche Genexpressionsanalyse von MicroTom Wildtyp und MicroTom lecer6 wurde ein microarray Experiment konzipiert, welches 167 Oligonukleotide umfasst entsprechend zu bekannten EST- und Gensequenzen der Tomate, die möglicherweise an der Wachsbiosynthese, Wachsmodifikation, relevanten Transportprozessen oder Stressreaktionen beteiligt sind. Der Vergleich der Genexpression zwischen Wildtyp und der lecer6 Mutante zeigte eine Vielzahl von differentiell expremierten Transkripten unter anderem Lipidtransferproteine und das Dehydrin TAS14. Anhand derer kann davon ausgegangen werden, dass der Verlust der LeCER6 Funktion unterschiedliche regulative Mechanismen beeinflusst, wie zum Beispiel Lipidtransportprozesse und Reaktionen des osmotischen Stresses, die mit einer Schwächung der kutikulären Transpirationsbarriere der Fruchtepidermis einhergehen. Die vorliegende Studie belegt zudem erstmals einen Zusammenhang zwischen der Steigerung der LeCer6 Genexpression, der nur geringfügig zeitverzögerten Anreicherung sehr langkettiger n-Alkane in den kutikulären Wachsen und der daraus resultierenden Barriereleistungsfähigkeit. Ebenso wird eine Regulation der kutikulären Wachsbiosynthese in Abhängigkeit von den jeweiligen Stadien der Fruchtentwicklung veranschaulicht. Der organspezifische Vergleich der kutikulären Wachsbiosynthese zeigte, dass sich die Wachsmuster von Früchten und Blättern der Tomatenpflanzen deutlich voneinander unterscheiden. Die Wachsakkumulation auf der Blätterepidermis ist durch die LeCER6-Defizienz hauptsächlich im Anteil sehr langkettiger n-Alkane > C30 signifikant herabgesenkt, während der Gehalt an pentazyklischen Triterpenoiden jedoch nicht, so wie in den Früchten der lecer6 Mutante beobachtet, ansteigt. Aufgrund dieser Untersuchungen der Tomatenfrüchte und -blätter konnte LeCER6 als ein Schlüsselenzym für die Verlängerung sehr langkettiger Fettsäurederivate innerhalb der kutikulären Wachsbiosynthese funktionell charakterisiert werden. Anhand von vergleichenden in silico Sequenzanalysen mit den Fettsäurenelongasen GhCER6 aus Gossypium hirsutum L. und AtCER6 aus Arabidopsis thaliana (L.) Heynh. konnten sowohl zwei mögliche transmembrane Proteindomänen im N-terminalen Bereich als auch hochkonservierte Bereiche im katalytischen Zentrum des LeCER6-Enzyms lokalisiert werden, die vermutlich zur funktionellen Struktur des Enzyms beitragen. Neben der bereits angeführten entwicklungsabhängigen Regulation der Wachsbiosynthese beeinflussen auch Umweltstressoren die kutikuläre Wachsauflage der Tomatenfrüchte. Ein mechanisches Entfernen der epikutikulären Wachse führt zu einer beträchtlichen Reduktion der aliphatischen Wachsbestandteile, welche maßgeblich die Barriereeigenschaft der Kutikulamembran bestimmen. Die einsetzende Regeneration der manipulierten Wachsoberfläche führt zu einer vollständigen Kompensation der entfernten Wachskomponenten, so dass die Tomatenfrüchte in nur kurzer Zeit wieder eine dem Reifestadium entsprechende normale Verteilung der kutikulären Wachse aufweisen. Im Gegensatz dazu führt Wassermangel nur zu sehr geringfügigen qualitativen und quantitativen Veränderungen der kutikulären Wachsschicht und folglich des Wasserleitwertes der Tomatenfrüchte. Die hier dokumentierte Organfusion der Blüte und die eingeschränkte Sterilität der Tomatenpflanzen wurden als pleiotrope Effekte der lecer6 Mutation auf die Zell-Zell-Kommunikation charakterisiert, was der funktionellen Bedeutung von LeCER6 für die Epidermisintegrität entspricht und mit Beobachtungen an eceriferum Mutanten in Arabidopsis übereinstimmt. Die kombinierte Untersuchung phänotypischer und biochemischer Merkmale der Tomatenfrucht erlaubt eine breitere, systemorientierte Gegenüberstellung der Fruchtentwicklung von MicroTom Wildtyp und MicroTom lecer6. Dabei werden durch die Analysen von Größe, Frisch- und Trockengewicht, Dichte der Epidermiszellen, Photosyntheseaktivität und Glukosegehalt der Früchte die Unterschiede zwischen MicroTom Wildtyp und der lecer6 Mutante deutlich aufgezeigt. Die LeCER6-Defizienz der Mutante führt dabei zu weitreichenden Veränderungen im physiologischen Status der Frucht. Diese Ergebnisse spiegeln somit einen Teil des physiologischen Netzwerkes wider, welches weitreichende sekundäre Veränderungen im Lebenszyklus der Tomatenfrucht vermittelt. Das Stielnarbengewebe der Tomatenfrucht wird infolge der Verletzung durch den Ernteprozess gebildet. Basierend auf der de novo Suberinbiosynthese kann diesem Gewebe eine wichtige Barrierefunktion sowohl zur Einschränkung des unkontrollierten Wasserverlustes als auch zur Verringerung der Infektionsrate durch einen pilzlichen Erreger während der Lagerung von Tomatenfrüchten beigemessen werden. Eine Beteiligung der endogenen Abscisinsäure an dem der Bildung des suberinisierten Gewebes der Fruchtstielnarbe zugrunde liegendem, molekularen Signalweg konnte nachgewiesen werden. Zusammenfassend dokumentiert diese Arbeit erstmalig detaillierte Studien im Hinblick auf pflanzliche Barriereeigenschaften an einem intakten Modellsystem. Die präsentierten Ergebnisse zu molekularen Untersuchungen der Wachsbiosynthese und qualitative and quantitative Analysen der Wachsakkumulation werden im Zusammenhang des Schutzes der Pflanzenoberfläche gegen Wasserverlust durch Transpiration diskutiert und bieten somit neue Erkenntnisse über die pflanzliche Kutikula. KW - Wachs KW - Kutikula KW - Tomate KW - Fruchtbildung KW - Transpiration KW - wax KW - cuticle KW - tomato KW - fruit KW - transpiration Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34526 ER -