TY - THES A1 - Schmitt, Dominique T1 - Initial characterization of mouse Syap1 in the nervous system: Search for interaction partners, effects of gene knockdown and knockout, and tissue distribution with focus on the adult brain T1 - Erste Charakterisierung des Maus-Syap1 im Nervensystem: Suche nach Interaktionspartnern, Auswirkungen von Gen-Knockdown und-Knockout sowie Untersuchungen über die Verteilung im Gewebe mit Fokus auf das adulte Gehirn N2 - The synapse-associated protein of 47 kDa (Sap47) in Drosophila melanogaster is the founding member of a phylogenetically conserved protein family of hitherto unknown molecular function. Sap47 is localized throughout the entire neuropil of adult and larval brains and closely associated with glutamatergic presynaptic vesicles of larval motoneurons. Flies lacking the protein are viable and fertile and do not exhibit gross structural or marked behavioral deficiencies indicating that Sap47 is dispensable for basic synaptic function, or that its function is compensated by other related proteins. Syap1 - the mammalian homologue of Sap47 - was reported to play an essential role in Akt1 phosphorylation in various non-neuronal cells by promoting the association of mTORC2 with Akt1 which is critical for the downstream signaling cascade for adipogenesis. The function of Syap1 in the vertebrate nervous system, however, is unknown so far. The present study provides a first description of the subcellular localization of mouse Syap1 in cultured motoneurons as well as in selected structures of the adult mouse nervous system and reports initial functional experiments. Preceding all descriptive experiments, commercially available Syap1 antibodies were tested for their specificity and suitability for this study. One antibody raised against the human protein was found to recognize specifically both the human and murine Syap1 protein, providing an indispensable tool for biochemical, immunocytochemical and immunohistochemical studies. In the course of this work, a Syap1 knockout mouse was established and investigated. These mice are viable and fertile and do not show obvious changes in morphology or phenotype. As observed for Sap47 in flies, Syap1 is widely distributed in the synaptic neuropil, particularly in regions rich in glutamatergic synapses but it was also detected at perinuclear Golgi-associated sites in certain groups of neuronal somata. In motoneurons the protein is especially observed in similar perinuclear structures, partially overlapping with Golgi markers and in axons, dendrites and axonal growth cones. Biochemical and immunohistochemical analyses showed widespread Syap1 expression in the central nervous system with regionally distinct distribution patterns in cerebellum, hippocampus or olfactory bulb. Besides its expression in neurons, Syap1 is also detected in non-neuronal tissue e.g. liver, kidney and muscle tissue. In contrast, non-neuronal cells in the brain lack the typical perinuclear accumulation. First functional studies with cultured primary motoneurons on developmental, structural and functional aspects reveal no influence of Syap1 depletion on survival and morphological features such as axon length or dendritic length. Contrary to expectations, in neuronal tissues or cultured motoneurons a reduction of Akt phosphorylation at Ser473 or Thr308 was not detected after Syap1 knockdown or knockout. N2 - Das Synapsen-assoziierte Protein von 47 kDa (Sap47) in Drosophila melanogaster ist das Gründungsmitglied einer phylogenetisch konservierten Proteinfamilie von unbekannter molekularer Funktion. Sap47 ist im gesamten Neuropil des adulten und larvalen Gehirns lokalisiert und mit glutamatergen, präsynaptischen Vesikeln in larvalen Motoneuronen assoziiert. Fliegen, denen das Protein fehlt, sind lebensfähig und fruchtbar und weisen keine schwerwiegenden strukturellen oder ausgeprägten verhaltensbezogenen Defizite auf, was darauf hinweist, dass Sap47 für eine basale synaptische Funktion entbehrlich ist beziehungsweise das Fehlen seiner Funktion durch andere, eventuell verwandte Proteine, kompensiert werden kann. Über Syap1 - das Säugetierhomolog von Sap47 - wurde berichtet, dass es in verschiedenen nicht-neuronalen Zellen eine essentielle Rolle in der Akt1 Phosphorylierung spielt, indem es die Assoziation von mTORC2 und Akt1 begünstigt, welche für den nachgeschalteten Signalweg bei der Adipogenese essentiell ist. Die Funktion von Syap1 im Vertebraten-Nervensystem ist dagegen bislang unbekannt. Die vorliegende Studie liefert die Erstbeschreibung von neuronalem Syap1 über die subzelluläre Lokalisation des Proteins in kultivierten Motoneuronen sowie die Verteilung in ausgewählten Strukturen des adulten Nervensystems der Maus und beschreibt initiale funktionelle Experimente. Allen beschreibenden Experimenten voran, wurden kommerziell erhältliche Syap1 Antikörper auf ihre Spezifität und Tauglichkeit für diese Studie getestet. Einer der Antikörper, der gegen das humane Protein hergestellt wurde, erkennt spezifisch sowohl das humane, als auch das murine Syap1 Protein und stellt somit ein unentbehrliches Werkzeug für alle biochemischen, immunzytochemischen und immunhistochemischen Untersuchungen dar. Im Zuge der Arbeit wurde eine Syap1-Knockout Maus untersucht, welche vital und fruchtbar ist und keine offensichtlichen Veränderungen in ihrem morphologischen Phänotyp aufweist. Wie auch Sap47 in Fliegen, ist Syap1 im synaptischen Neuropil weit verbreitet, insbesondere in Regionen, die reich an glutamatergen Synapsen sind, aber es wurde auch in einer deutlichen, Golgi-assoziierten Akkumulation in bestimmten Gruppen neuronaler Zellkörper beobachtet. In Motoneuronen wurde das Protein besonders in ähnlichen perinukleären Strukturen detektiert, welche zum Teil mit Golgi Markern überlappen und zudem in Axonen, Dendriten und Wachstumskegeln detektiert. Wie biochemische und immunhistochemische Untersuchungen ergaben, zeigt das Syap1 Protein eine weit verbreitete Expression im zentralen Nervensystem mit Regionen-spezifischem Verteilungsmuster wie es beispielsweise im Kleinhirn, dem Hippocampus oder dem olfaktorischen Bulbus beobachtet wurde. Neben der Expression in Neuronen wurde Syap1 auch in nicht neuronalen Geweben wie der Leber, Niere und im Muskel detektiert. Nicht-neuronalen Zellen im Gehirn fehlte dagegen die typische perinukleäre Akkumulation in immunhistochemischen Färbungen. Erste funktionelle Studien mit kultivierten primären Motoneuronen über entwicklungsbezogene, strukturelle und funktionelle Gesichtspunkte ergaben keinen Einfluss einer Syap1 Depletion auf das Überleben oder morphologische Merkmale wie Axon- oder Dendritenlänge. Entgegen den Erwartungen, wurde nach Syap1 Knockdown oder Knockout in neuronalem Gewebe oder kultivierten Motoneuronen keine Reduktion in der Akt1 Phosphorylierung an Ser473 oder Thr308 detektiert. KW - Synapse KW - Nervensystem KW - Motoneuron KW - Golgi-Apparat KW - Syap1 KW - Sap47 KW - Synapse-associated protein KW - Golgi apparatus KW - Synapsen assoziiert Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147319 ER - TY - THES A1 - Moradi, Mehri T1 - Differential roles of α-, β- and γ-actin isoforms in regulation of cytoskeletal dynamics and stability during axon elongation and collateral branch formation in motoneurons T1 - Rolle der α-, β- und γ-Aktin Isoformen bei Regulation von Dynamik und Stabilität des Zytoskeletts während des Axonwachstums und beim Ausbilden von axonalen Verzweigungen in Motoneuronen N2 - In highly polarized cells like neurons, cytoskeleton dynamics play a crucial role in establishing neuronal connections during development and are required for adult plasticity. Actin turnover is particularly important for neurite growth, axon path finding, branching and synaptogenesis. Motoneurons establish several thousand branches that innervate neuromuscular synapses (NMJs). Axonal branching and terminal arborization are fundamental events during the establishment of synapses in motor endplates. Branching process is triggered by the assembly of actin filaments along the axon shaft giving rise to filopodia formation. The unique contribution of the three actin isoforms, α-, β- and γ-actin, in filopodia stability and dynamics during this process is not well characterized. Here, we performed high resolution in situ hybridization and qRT-PCR and showed that in primary mouse motoneurons α-, β- and γ-actin isoforms are expressed and their transcripts are translocated into axons. Using FRAP experiments, we showed that transcripts for α-, β- and γ-actin become locally translated in axonal growth cones and translation hot spots of the axonal branch points. Using live cell imaging, we showed that shRNA depletion of α-actin reduces dynamics of axonal filopodia which correlates with reduced number of collateral branches and impairs axon elongation. Depletion of β-actin correlates with reduced dynamics of growth cone filopoida, disturbs axon elongation and impairs presynaptic differentiation. Also, depletion of γ-actin impairs axonal growth and decreases axonal filopodia dynamics. These findings implicate that actin isoforms accomplish unique functions during development of motor axons. Depletions of β- and γ-actin lead to compensatory upregulation of other two isoforms. Consistent with this, total actin levels remain unaltered and F-actin polymerization capacity is preserved. After the knockdown of either α- or γ-actin, the levels of β-actin increase in the G-actin pool indicating that polymerization and stability of β-actin filaments depend on α- or γ-actin. This study provides evidence both for unique and overlapping function of actin isoforms in motoneuron growth and differentiation. In the soma of developing motoneurons, actin isoforms act redundantly and thus could compensate for each other’s loss. In the axon, α-, β- and γ-actin accomplish specific functions, i.e. β-actin regulates axon elongation and plasticity and α- and γ-actin regulate axonal branching. Furthermore, we show that both axonal transport and local translation of α-, β- and γ-actin isoforms are impaired in Smn knockout motoneurons, indicating a role for Smn protein in RNA granule assembly and local translation of these actin isoforms in primary mouse motoneurons. N2 - In stark polaren Zellen wie den Neuronen ist die Etablierung neuronaler Netzwerke ein entscheidender Faktor bei der Entwicklung des zentralen Nervensystems und spielt für die adulte Plastizität eine wesentliche Rolle. Besonders die Aktindynamik ist wichtig für das Neuritenwachstum, die axonale Wegfindung und Verzweigung, sowie die Synaptogenese. Motoneurone bilden mehrere tausend terminale Verzweigungen aus, um neuromuskuläre Endplatten (NMJ) zu innervieren. Die axonale Verzweigung ist ein fundamentales Ereignis bei Ausbildung synaptischer Verbindungen zwischen Motoneuron und innerviertem Muskel. Die Axonverzweigung geschieht durch die Polymerisierung von Aktin entlang des Axonschafts, was zur Entstehung von Filopodien und Lamellopodien führt. Allerdings ist die genaue Funktion der drei Aktin-Isoformen (α-, β- and γ-Actin), im Zusammenhang mit der Regulation der Filopodienstabilität und deren Dynamik, noch weitestgehend unbekannt. Somit konnten wir in dieser Arbeit mit Hilfe hoch sensitiver in situ Hybridisierungs- und qRT PCR Techniken zeigen, dass in primären Mausmotoneuronen alle drei Aktinisoformen (α-, β- und γ) exprimiert, und deren Transkripte entlang des axonalen Kompartiments transportiert werden. Unsere FRAP Daten weisen darauf hin, dass α-, β- und γ-Aktin sowohl im Wachstumskegel als auch an sogenannten „Translation Hot Spots“ innerhalb axonaler Verzweigungspunkte lokal synthetisiert werden. Anhand von „Live Cell Imaging“ Experimenten konnten wir dann zeigen, dass ein α-Aktin Knockdown die Dynamik axonaler Filopodien stark reduziert, und als Folge, die Anzahl von axonalen Verzweigungen und die Axonlänge verringert ist. Hingegen geht ein β-Aktin Knockdown mit reduzierter Filopodiendynamik im Wachstumskegel und betroffener Differenzierung präsynaptischer Strukturen einher. Veränderungen des axonalen Wachstum und der Filopodiendynamik sind ebenfalls bei einem γ-Aktin Knockdown zu beobachten. Diese Daten weisen darauf hin, dass die drei Aktinisoformen unterschiedliche Funktionen bei der Entwicklung von Motoraxonen haben. Darüber hinaus zeigen unsere Daten, dass die Herunterregulation einer Aktinisoform durch eine erhöhte Expression der beiden anderen Isoformen kompensiert wird. Dieser Kompensationsmechanismus erlaubt es, die gesamte Aktinmenge und somit die F-Aktin-Polymerisation in der Zelle aufrechtzuerhalten. Sehr interessant dabei ist die Beobachtung, dass nach einem α- oder γ-Actin Knockdown das G/F-Verhältnis verändert ist, so dass die Menge an β-Aktin im G-Aktin Pool steigt und im F-Aktin Pool abnimmt. Daher beruhen Polymerisation und Stabilität von β-Aktin auf den α-, und γ-Aktinisoformen. Zusammenfassend lässt sich sagen, dass alle drei Aktinisoformen übergreifende Funktionen während Wachstum und Differenzierung von Motoneuronen haben. Im Zellkörper von sich entwickelnden Motoneuronen übernehmen sie ähnliche Aufgaben und können sich somit gegenseitig kompensieren. Im Gegensatz dazu sind die Funktionen im axonalen Kompartiment wesentlich spezifischer. Hier reguliert β-Aktin axonales Wachstum und Plastizität, während α- und γ-Aktin eine entscheidende Rolle bei der Ausbildung axonaler Verzweigungen haben. Unsere Arbeit lässt nun Rückschlüsse über mögliche Funktionen des SMN Proteins beim Aufbau der sogenannten „RNA Granules“ und lokaler Proteinbiosynthese der verschiedenen Aktinisoformen in primären Mausmotoneuronen zu. KW - Motoneuron KW - Spinale Muskelatrophie KW - Actin KW - Actin Dynamics KW - Isomer KW - Motoneurons KW - Axon Branching KW - Spinal Muscular Atrophy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147453 ER - TY - THES A1 - Saal, Lena T1 - Whole transcriptome profiling of compartmentalized motoneurons T1 - Globale Transkriptomanalyse von kompartimentierten Motoneuronen N2 - Spinal muscular atrophy and amyotrophic lateral sclerosis are the two most common devastating motoneuron diseases. The mechanisms leading to motoneuron degeneration are not resolved so far, although different hypotheses have been built on existing data. One possible mechanism is disturbed axonal transport of RNAs in the affected motoneurons. The underlying question of this study was therefore to characterize changes in transcript levels of distinct RNAs in cell culture models of spinal muscular atrophy and amyotrophic lateral sclerosis, especially in the axonal compartment of primary motoneurons. To investigate this in detail we first established compartmentalized cultures of Primary mouse motoneurons. Subsequently, total RNA of both compartments was extracted separately and either linearly amplified and subjected to microarray profiling or whole transcriptome amplification followed by RNA-Sequencing was performed. To make the whole transcriptome amplification method suitable for compartmentalized cultures, we adapted a double-random priming strategy. First, we applied this method for initial optimization onto serial dilutions of spinal cord RNA and later on to the compartmentalized motoneurons. Analysis of the data obtained from wildtype cultures already revealed interesting results. First, the RNA composition of axons turned out to be highly similar to the somatodendritic compartment. Second, axons seem to be particularly enriched for transcripts related to protein synthesis and energy production. In a next step we repeated the experiments by using knockdown cultures. The proteins depleted hereby are Smn, Tdp-43 and hnRNP R. Another experiment was performed by knocking down the non-coding RNA 7SK, the main interacting RNA of hnRNP R. Depletion of Smn led to a vast number of deregulated transcripts in the axonal and somatodendritic compartment. Transcripts downregulated in the axons upon Smn depletion were especially enriched for GOterms related to RNA processing and encode proteins located in neuron projections including axons and growth cones. Strinkingly, among the upregulated transcripts in the somatodendritic compartment we mainly found MHC class I transcripts suggesting a potential neuroprotective role. In contrast, although knockdown of Tdp-43 also revealed a large number of downregulated transcripts in the axonal compartment, these transcripts were mainly associated with functions in transcriptional regulation and RNA splicing. For the hnRNP R knockdown our results were again different. Here, we observed downregulated transcripts in the axonal compartment mainly associated with regulation of synaptic transmission and nerve impulses. Interestingly, a comparison between deregulated transcripts in the axonal compartment of both hnRNP R and 7SK knockdown presented a significant overlap of several transcripts suggesting some common mechanism for both knockdowns. Thus, our data indicate that a loss of disease-associated proteins involved in axonal RNA transport causes distinct transcriptome alterations in motor axons. N2 - Spinale Muskelatrophie und Amyotrophe Lateralsklerose zählen zu den beiden häufigsten und schwersten Motoneuronerkrankungen. Der zugrunde liegende Mechanismus beider Krankheiten ist bis heute nicht geklärt, dennoch werden verschiedene Theorien diskutiert. Ein möglicher Grund ist ein gestörter axonaler Transport von RNAs in den betroffenen Motoneuronen. Daraus folgernd ergab sich die zugrunde liegende Frage dieser Arbeit, ob Veränderungen in den Transkriptleveln bestimmter RNAs unter krankheitsähnlichen Bedingungen vor allem im axonalen Kompartiment von primären Maus-Motoneuronen beobachtet werden können. Um die Fragestellung genauer zu untersuchen, etablierten wir zuerst kompartimentierte Kulturen von primären Motoneuronen. Darauffolgend haben wir die totale RNA aus beiden Kompartimenten separat extrahiert und entweder diese linear amplifiziert und zur Microarrayanalyse gegeben oder wir führten eine Amplifikation des kompletten Transkriptoms mit anschließender RNA-Sequenzierung durch. Um die Amplifikation des kompletten Transkriptoms auch für die kompartimentierten Kulturen geeignet zu machen, verwendeten wir eine doublerandom priming Strategie und haben diese entsprechend angepasst. Zuerst wendeten wir die Methode an Serienverdünnungen von RNA aus dem Rückenmark an, um die Methode zu optimisieren. Später benutzten wir die Methode ebenfalls für kompartimentierte Motoneurone. Schon die Analyse der Wildtyp-Daten lieferte interessante Ergebnisse. Erstens, die Zusammensetzung der RNA in Axonen war höchst ähnlich zu der im somatodendritischen Kompartiment. Zweitens, in Axonen scheinen speziell Transkripte angereichert zu sein, welche mit Proteinsynthese und Energieproduktion in Verbindung stehen. In einem nächsten Schritt wurden dann die Experimente unter Verwendung von Knockdown-Kulturen wiederholt. Die Proteine, die dabei vermindert wurden waren Smn, Tdp-43 und hnRNP R. Ein weiteres Experiment wurde durchgeführt indem die nicht-codierende RNA 7SK verringert wurde. Die Depletion von Smn führte zu einer hohen Anzahl an deregulierten Transkripten sowohl im axonalen, als auch im somatodendritischen Kompartiment. Transkripte, die im axonalen Kompartiment nach Smn Depletion verringert waren, waren überwiegend für GOTerms angereichert, welche mit RNA Prozessierung in Verbindung stehen oder welche Proteine codieren, die in neuronalen Fortsätzen, einschließlich Axon und Wachstumskegel lokalisiert sind. Bemerkenswert ist, dass wir unter den hochregulierten Transkripten im somatodendritischen Kompartiment überwiegend MHC Klasse I Transkripte gefunden haben. Dies könnte eine mögliche neuroprotektive Rolle dieser Transkripte annehmen lassen. Im Gegensatz zu den Ergebnissen beim Smn Knockdown fanden wir beim Tdp-43 Knockdown ebenfalls eine große Anzahl an herunterregulierten Transkripten im axonalen Kompartiment, diese sind allerdings überwiegend mit Funktionen in der Transkriptionsregulierung und beim RNA Splicing assoziiert. Die Ergebnisse des hnRNP R Knockdowns waren ebenfalls unterschiedlich. Bei diesem fanden wir die herunteregulierten Transkripte im axonalen Kompartiment überwiegend mit einer Regulierung der synaptischen Übertragung sowie mit Nervenimpulsen assoziiert. Interessanterweise zeigte ein Vergleich der deregulierten Transkripte sowohl im axonalen Kompartiment vom hnRNP R Knockdown, als auch vom 7SK Knockdown eine signifikante Übereinstimmung mehrerer Transkripte. Dies lässt einen teilweise gemeinsamen Mechanismus für beide Genprodukte vermuten. Somit deuten unsere Daten darauf hin, dass ein Verlust von krankheitsassoziierten Proteinen, die eine Rolle beim axonalen RNA-Transport spielen, zu verschiedenen Transkriptomveränderungen in Axonen von Motoneuronen führt. KW - Axon KW - Motoneuron KW - Spinale Muskelatrophie KW - amyotrophic lateral sclerosis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140006 ER - TY - JOUR A1 - Ferero, Andrea A1 - Rivero, Olga A1 - Wäldchen, Sina A1 - Ku, Hsing-Ping A1 - Kiser, Dominik P. A1 - Gärtner, Yvonne A1 - Pennington, Laura S. A1 - Waider, Jonas A1 - Gaspar, Patricia A1 - Jansch, Charline A1 - Edenhofer, Frank A1 - Resink, Thérèse J. A1 - Blum, Robert A1 - Sauer, Markus A1 - Lesch, Klaus-Peter T1 - Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain JF - Frontiers in Cellular Neuroscience N2 - Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders. KW - serotonin KW - cadherin-13 (CDH13) KW - T-cadherin KW - neurodevelopment KW - psychiatric disorders KW - radial glia KW - dorsal raphe KW - prefrontal cortex Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170313 VL - 11 IS - 307 ER - TY - JOUR A1 - Oehler, Beatrice A1 - Kistner, Katrin A1 - Martin, Corinna A1 - Schiller, Jürgen A1 - Mayer, Rafaela A1 - Mohammadi, Milad A1 - Sauer, Reine-Solange A1 - Filipovic, Milos R. A1 - Nieto, Francisco R. A1 - Kloka, Jan A1 - Pflücke, Diana A1 - Hill, Kerstin A1 - Schaefer, Michael A1 - Malcangio, Marzia A1 - Reeh, Peter W. A1 - Brack, Alexander A1 - Blum, Robert A1 - Rittner, Heike L. T1 - Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation JF - Scientific Reports N2 - Phospholipids occurring in cell membranes and lipoproteins are converted into oxidized phospholipids (OxPL) by oxidative stress promoting atherosclerotic plaque formation. Here, OxPL were characterized as novel targets in acute and chronic inflammatory pain. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) and its derivatives were identified in inflamed tissue by mass spectrometry and binding assays. They elicited calcium influx, hyperalgesia and induced pro-nociceptive peptide release. Genetic, pharmacological and mass spectrometric evidence in vivo as well as in vitro confirmed the role of transient receptor potential channels (TRPA1 and TRPV1) as OxPAPC targets. Treatment with the monoclonal antibody E06 or with apolipoprotein A-I mimetic peptide D-4F, capturing OxPAPC in atherosclerosis, prevented inflammatory hyperalgesia, and in vitro TRPA1 activation. Administration of D-4F or E06 to rats profoundly ameliorated mechanical hyperalgesia and inflammation in collagen-induced arthritis. These data reveal a clinically relevant role for OxPAPC in inflammation offering therapy for acute and chronic inflammatory pain treatment by scavenging OxPAPC. KW - chronic pain KW - ion channels in the nervous system KW - molecular medicine KW - pain Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158536 VL - 7 IS - 5447 ER - TY - JOUR A1 - Dombert, Benjamin A1 - Balk, Stefanie A1 - Lüningschrör, Patrick A1 - Moradi, Mehri A1 - Sivadasan, Rajeeve A1 - Saal-Bauernschubert, Lena A1 - Jablonka, Sibylle T1 - BDNF/trkB induction of calcium transients through Ca\(_{v}\)2.2 calcium channels in motoneurons corresponds to F-actin assembly and growth cone formation on β2-chain laminin (221) JF - Frontiers in Molecular Neuroscience N2 - Spontaneous Ca\(^{2+}\) transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca\(^{2+}\) influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca\(^{2+}\) transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca\(^{2+}\) channels (Ca\(_{v}\)2.2) in axonal growth cones. TrkB-deficient (trkBTK\(^{-/-}\)) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca\(^{2+}\) transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca\(^{2+}\) transients and Ca\(_{v}\)2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Ca\(_{v}\)2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Ca\(_{v}\)2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease. KW - growth cone KW - BDNF KW - trkB KW - Ca\(_{v}\)2.2 KW - F-actin KW - motor axon Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159094 VL - 10 IS - 346 ER - TY - JOUR A1 - Milanos, Sinem A1 - Elsharif, Shaimaa A. A1 - Janzen, Dieter A1 - Buettner, Andrea A1 - Villmann, Carmen T1 - Metabolic Products of Linalool and Modulation of GABA\(_{A}\) Receptors JF - Frontiers in Chemistry N2 - Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory α1β2 GABA\(_{A}\) receptors in various expression systems. However, in plants or humans, i.e., following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at α1β2γ2 GABA\(_{A}\) receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC\(_{10-30}\) together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself. KW - Cys-loop receptor KW - GABA\(_{A}\) KW - receptor KW - linalool KW - linalyl acetate KW - oxygenation KW - patch-clamp Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170779 VL - 5 IS - 46 ER - TY - JOUR A1 - Lüningschrör, Patrick A1 - Binotti, Beyenech A1 - Dombert, Benjamin A1 - Heimann, Peter A1 - Perez-Lara, Angel A1 - Slotta, Carsten A1 - Thau-Habermann, Nadine A1 - von Collenberg, Cora R. A1 - Karl, Franziska A1 - Damme, Markus A1 - Horowitz, Arie A1 - Maystadt, Isabelle A1 - Füchtbauer, Annette A1 - Füchtbauer, Ernst-Martin A1 - Jablonka, Sibylle A1 - Blum, Robert A1 - Üçeyler, Nurcan A1 - Petri, Susanne A1 - Kaltschmidt, Barbara A1 - Jahn, Reinhard A1 - Kaltschmidt, Christian A1 - Sendtner, Michael T1 - Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease JF - Nature Communications N2 - Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease. KW - autophagy KW - synaptic vesicles KW - Pleckstrin homology containing family member 5 (Plekhg5) KW - regulation KW - motoneuron disease Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170048 VL - 8 IS - 678 ER -