TY - JOUR A1 - Herweg, Jo-Ana A1 - Hansmeier, Nicole A1 - Otto, Andreas A1 - Geffken, Anna C. A1 - Subbarayal, Prema A1 - Prusty, Bhupesh K. A1 - Becher, Dörte A1 - Hensel, Michael A1 - Schaible, Ulrich E. A1 - Rudel, Thomas A1 - Hilbi, Hubert T1 - Purification and proteomics of pathogen-modified vacuoles and membranes JF - Frontiers in Cellular and Infection Microbiology N2 - Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. KW - spectrometry-based proteomics KW - Mycobacterium tuberculosis KW - Chlamydia KW - Salmonella KW - bacterium Legionella pneumophila KW - endocytic multivesicular bodies KW - phagosome maturation arrest KW - III secretion system KW - endoplasmic reticulum KW - Chlamydia trachomatis KW - Simkania negevensis KW - intracellular bacteria KW - host pathogen interactions KW - immuno-magnetic purification KW - Legionella KW - Mycobacterium KW - Simkania KW - pathogen vacuole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151823 VL - 5 IS - 48 ER - TY - THES A1 - Huber, Annette T1 - Chlamydial deubiquitinase ChlaDUB1 as regulator of host cell apoptosis and new target for anti-chlamydial therapy T1 - Die chlamydiale Deubiquitinase ChlaDUB1 als Regulator der Wirtszellapoptose und neue Zielstruktur in der anti-chlamydialen Therapie N2 - Chlamydia trachomatis is an obligate intracellular pathogen that replicates inside a vacuole, the so-called inclusion. During replication by a biphasic life-cycle Chlamydia secrete via their type 3 secretion system various effector proteins into the inclusion lumen, the inclusion membrane or the host cell cytosol to form their favored replication niche. Chlamydia-infected cells are highly resistant against apoptosis since the replicative form of Chlamydia is non-infectious and premature cell death would cause complete loss of one Chlamydia generation. The bacteria block apoptosis by preventing mitochondrial outer membrane permeabilization. Various proteins with anti-apoptotic function are enriched in Chlamydia-infected cells such as Mcl-1, cIAP2, Survivin or HIF1α. The accumulation of these proteins is a result of increased gene expression and direct protein stabilization. However, the molecular mechanisms and involved bacterial effector proteins are mostly unknown. With this work the molecular mechanisms of Mcl-1 stabilization and the participation of chlamydial factors were investigated. Mcl-1 is a member of the Bcl-2 protein family and has an extremely short half-life causing its permanent ubiquitination and subsequent degradation by the 26S proteasome under normal homeostasis whilst Mcl-1 accumulation results in apoptosis inhibition. It was shown that during C. trachomatis infection Mcl-1 ubiquitination is reduced causing its stabilization albeit no cellular ubiquitin-proteasome-system components are involved in this process. However, C. trachomatis express the two deubiquitinases ChlaDUB1 and ChlaDUB2 which are mostly uncharacterized. With this work the expression profile, subcellular localization, substrates and function of the deubiquitinases were investigated. It was shown that ChlaDUB1 is secreted to the surface of the inclusion where it interacts with Mcl-1 which is accumulated in the proximity of this compartment. By utilization of infection experiments, heterologous expression systems and in vitro experiments a direct interaction of ChlaDUB1 and Mcl-1 was demonstrated. Furthermore, it was shown that Mcl-1 is deubiquitinated by ChlaDUB1 causing its stabilization. During replicative phase of infection, ChlaDUB2 seems to be accumulated in the chlamydial particles. However, ChlaDUB2 substrates could not be identified which would give an indication for the physiological role of ChlaDUB2. Since 2011, a protocol to transform C. trachomatis with artificial plasmid DNA is available. As part of this work the transformation of C. trachomatis with plasmid DNA suitable for the permanent or inducible protein overexpression on a routinely basis was established. In addition, the first targeted homologous recombination into the chlamydial genome to replace the ChlaDUB1 gene by a modified one was performed and validated. The targeted homologous recombination was also used to create a ChlaDUB1 knock-out mutant; however deletion of ChlaDUB1 seems to be lethal for C. trachomatis. Due to the fact that ChlaDUB1-lacking Chlamydia could not be obtained an inhibitor screen was performed and identified CYN312 as a potential ChlaDUB1 inhibitor. Application of CYN312 during infection interfered with chlamydial growth and reduced Mcl-1 quantity in infected cells. Furthermore, CYN312 treated Ctr-infected cells were significantly sensitized for apoptosis. Taken together, C. trachomatis secretes the deubiquitinase ChlaDUB1 to the surface of the inclusion where it deubiquitinates Mcl-1 causing its accumulation in infected cells resulting in apoptosis resistance. Application of the ChlaDUB1 inhibitor CYN312 interferes with Mcl-1 stabilization sensitizing infected cells for apoptosis. N2 - Chlamydia trachomatis ist ein obligat intrazelluläres Bakterium, welches sich in einer Vakuole, der sogenannten Inclusion vermehrt. Chlamydien durchlaufen einen zweiphasigen Entwicklungszyklus während welchem sie zu bestimmten Zeitpunkten der Infektion Effektorproteine mittels ihres Typ 3 Sekretionssystems in das Inclusionslumen, die Inclusionsmembran oder das Wirtszellzytoplasma sekretieren. Durch die Aktivität der Effektorproteine schaffen die Chlamydien die für sie favorisierten Bedingungen. Zusätzlich zeigen infizierte Zellen eine hohe Resistenz gegenüber Apoptose. Ein vorzeitiger Zelltod der Wirtszelle würde zum Verlust einer vollständigen Generation an Chlamydien führen, da die replizierende Form der Chlamydien nicht infektiös ist. Chlamydien hemmen die Wirtszellapoptose indem sie die Permeabilisierung der äußeren Mitochondrienmembran verhindern. Es ist bekannt, dass mehrere anti-apoptotische Proteine wie Mcl-1, cIAP2, Survivin oder HIF1α während der Infektion mit Chlamydien zu bestimmten Zeitpunkten angereichert werden und für die Apoptoseinhibition wichtig sind. Allerdings sind die molekularen Mechanismen sowie die beteiligten bakteriellen Proteine weitestgehend unbekannt. Mit dieser Arbeit wurden die molekularen Mechanismen der Mcl-1 Stabilisierung sowie die darin involvierten chlamydialen Proteine untersucht. Mcl-1, ein Mitglied der Bcl-2 Proteinfamilie, ist ein extrem instabiles Protein welches unter normalen Bedingungen permanent ubiquitiniert und vom 26S Proteasom abgebaut wird; eine Anreicherung von Mcl-1 hingegen führt zur Apoptoseinhibierung. In dieser Arbeit konnte gezeigt werden, dass während der Chlamydieninfektion Mcl-1 weniger ubiquitiniert wird was dessen Stabilisierung zur Folge hat. Es konnte jedoch keine Beteiligung von Komponenten des zellulären Ubiquitin-Proteasom-Systems festgestellt werden. C. trachomatis exprimiert zwei Deubiquitinasen welche weitestgehend uncharakterisiert sind. Ein weiteres Ziel dieser Arbeit war es das Expressionsprofil, die Lokalisierung, Substrate und die Funktion der Deubiquitinasen zu untersuchen. Es konnte gezeigt werden, dass ChlaDUB1 zur Oberfläche der Inclusion sekretiert wird und dort mit Mcl-1 interagiert, welches in diesem Kompartiment angereichert vorliegt. Unter Verwendung von Infektionsmodellen, heterologen Expressionssystemen sowie in vitro Experimenten konnte eine direkte Bindung beider Proteine sowie die spezifische Deubiquitinierung von Mcl-1 durch ChlaDUB1 gezeigt werden. Durch die permanente Deubiquitinierung mittels ChlaDUB1 wird Mcl-1 stabilisiert und im Bereich der Inclusionsoberfläche angereichert. Im Gegensatz zu ChlaDUB1 konnte ChlaDUB2 während der replikativen Phase der Infektion nicht im Zytoplasma sondern lediglich innerhalb der Bakterien detektiert werden. Außerdem konnten bislang keine Substrate für ChlaDUB2 identifiziert werden, welche auf die physiologische Funktion dieses Effektors schließen lassen könnten. Seit 2011 ist ein Protokoll für die Transformation von Chlamydien mit artifizieller Plasmid-DNA verfügbar. Als Teil dieser Arbeit wurde die routinemäßige Transformation von Chlamydien mit Plasmid-DNA zur permanenten und induzierbaren Proteinüberexpression etabliert. Außerdem konnte die erste gezielte homologe Rekombination ins chlamydiale Genom durchgeführt werden. Hierbei wurde das ChlaDUB1-Gen durch eine modifizierte Form ersetzt. Die Herstellung einer ChlaDUB1-Deletionsmutante mittels homologer Rekombination war jedoch nicht erfolgreich, da ChlaDUB1 vermutlich essentiell für C. trachomatis ist. Da ChlaDUB1-defiziente Chlamydien nicht generiert werden konnten, wurde ein Inhibitorscreen durchgeführt und CYN312 als ChlaDUB1-Inhibitor identifiziert. Die Anwendung von CYN312 während Infektionsversuchen zeigte eine deutliche Reduktion des Chlamydienwachstums sowie eine verminderte Mcl-1 Stabilisierung. Als Folge dessen waren Chlamydien-infizierte und mit CYN312 behandelte Zellen signifikant für die Apoptoseinduktion sensibilisiert. Mit der vorliegenden Arbeit konnte gezeigt werden, dass C. trachomatis die Deubiquitinase ChlaDUB1 während der Infektion an die Oberfläche der Inclusion sekretiert. Dort katalysiert ChlaDUB1 die Deubiquitinierung von Mcl-1 was dessen Anreicherung in infizierten Zellen und somit eine erhöhte Apoptoseresistenz zur Folge hat. Die Verwendung des ChlaDUB1-Inhibitors CYN312 verhindert die Mcl-1 Stabilisierung und sensibilisiert somit infizierte Zellen für Apoptose. KW - Chlamydia trachomatis KW - Apoptosis KW - Chlamydia trachomatis KW - Apoptosis KW - secreted effector protein Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110013 ER - TY - THES A1 - Böhme, Linda T1 - Cellular response to double-stranded RNA in Chlamydia trachomatis-infected human host cells T1 - Zelluläre Antwort auf doppelsträngige RNA in Chlamydia trachomatis-infizierten humanen Wirtszellen N2 - Chlamydien sind Gram-negative, obligat-intrazelluläre Bakterien, die für ein weites Spektrum an relevanten Krankheiten verantwortlich sind. Auf Grund ihres zweiphasigen Entwicklungszyklusses sind Chlamydien von einer intakten Wirtszelle abhängig, um sich erfolgreich vermehren und im Organismus ausbreiten zu können. Daher haben Chlamydien anspruchsvolle Strategien entwickelt, um das Immunsystem des Wirtes auszuschalten oder den programmierten Zelltod ihrer Wirtszelle zu verhindern. In der vorliegenden Arbeit wurde untersucht, ob eine Infektion mit C. trachomatis einen Einfluss auf die zelluläre Antwort auf dsRNA nehmen kann. Die Synthese von dsRNA ist ein charakteristisches Merkmal der Replikation von Viren, welche sowohl die Apoptose induzieren als auch das Immunsystem aktivieren kann. Um eine chlamydiale und virale Co-Infektion zu simulieren, wurden Chlamydien-infizierte Epithelzellen mit der synthetischen dsRNA Polyinosin-Polycytidinsäure (polyI:C) transfiziert. Im ersten Teil der Arbeit wurde untersucht, ob Chlamydien die durch dsRNA eingeleitete Apoptose verhindern können. Eine signifikante Reduktion der dsRNA-induzierten Apoptose konnte in infizierten Zellen beobachtet werden. Es zeigte sich, dass die Prozessierung der Initiator-Caspase-8 in infizierten Zellen unterblieb. Dies war von der frühen bakteriellen Proteinsynthese abhängig und für die dsRNA-vermittelte Apoptose spezifisch, da der durch TNFalpha bewirkte Zelltod nicht auf der Ebene der Caspase-8 verhindert werden konnte. Die Aktivierung von zellulären Faktoren, die bei der Apoptoseinduzierung eine wichtige Rolle spielen, beispielsweise PKR und RNase L, war in infizierten Zellen jedoch unverändert. Stattdessen konnte durch RNA Interferenz-vermittelte Depletion gezeigt werden, dass der zelluläre Caspase-8-Inhibitor cFlip eine entscheidende Rolle bei der chlamydialen Blockierung der dsRNA-vermittelten Apoptose spielt. Mittels Co-Immunopräzipitation konnte ein erster Hinweis darauf gefunden werden, dass C. trachomatis eine Anreicherung von cFlip im dsRNA-induzierten Komplex von Caspase-8 und FADD bewirkt. Im zweiten Teil der Arbeit wurde untersucht, ob Chlamydien die Immunantwort auf virale Infektionen beeinflussen, welche vor allem die Expression von Interferonen und Interleukinen beinhaltet. Es stellte sich heraus, dass die Aktivierung des Interferon regulatory factor 3 (IRF-3) und des zur Familie von NF-kappaB Trankriptionsfaktoren gehörenden p65, zwei zentralen Regulatoren der Immunantwort auf dsRNA, in infizierten Epithelzellen verändert war. Die Degradation von IkappaB-alpha, des Inhibitors von NF-kappaB, war in infizierten Zellen beschleunigt, begleitet von einer Veränderung der Translokation des Transkriptionsfaktors in den Zellkern. Im Gegensatz dazu wurde die nukleäre Translokation von IRF-3 durch die Infektion signifikant verhindert. Die hier vorgestellten Daten zeigen erstmals, dass eine Infektion mit C. trachomatis die zelluläre Antwort auf dsRNA signifikant verändern kann und implizieren einen Einfluss von chlamydialen Infektionen auf den Ausgang von viralen Superinfektionen. N2 - Chlamydia are Gram-negative obligate intracellular bacteria responsible for a wide spectrum of relevant diseases. Due to their biphasic developmental cycle Chlamydia depend on an intact host cell for replication and establishment of an acute infection. Chlamydia have therefore evolved sophisticated strategies to inhibit programmed cell death (PCD) induced by a variety of stimuli and to subvert the host immune system. This work aimed at elucidating whether an infection with C. trachomatis can influence the cellular response to double-stranded RNA (dsRNA). The synthesis of dsRNA is a prominent feature of viral replication inside infected cells that can induce both PCD and the activation of a cellular innate immune response. In order to mimic chlamydial and viral co-infections, Chlamydia-infected cells were transfected with polyinosinic:polycytidylic acid (polyI:C), a synthetic dsRNA. In the first part of this work it was investigated whether C. trachomatis-infected host cells could resist apoptosis induced by polyI:C. A significant reduction in apoptosis, determined by PARP cleavage and DNA fragmentation, could be observed in infected cells. It could be shown that processing of the initiator caspase-8 was inhibited in infected host cells. This process was dependent on early bacterial protein synthesis and was specific for dsRNA because apoptosis induced by TNFalpha was not blocked at the level of caspase-8. Interestingly, the activation of cellular factors involved in apoptosis induction by dsRNA, most importantly PKR and RNase L, was not abrogated in infected cells. Instead, RNA interference experiments revealed the crucial role of cFlip, a cellular caspase-8 inhibitor, for chlamydial inhibition of dsRNA-induced apoptosis. First data acquired by co-immunoprecipitation experiments pointed to an infection-induced concentration of cFlip in the dsRNA-induced death complex of caspase-8 and FADD. In the second part of this work, the chlamydial influence on the first line of defense against viral infections, involving expression of interferons and interleukins, was examined. Activation of the interferon regulatory factor 3 (IRF-3) and the NF-kappaB transcription factor family member p65, both central regulators of the innate immune response to dsRNA, was altered in Chlamydia-infected epithelial cells. polyI:C-induced degradation of IkappaB-alpha, the inhibitor of NF-kappaB, was accelerated in infected cells which was accompanied by a change in nuclear translocation of the transcription factor. Translocation of IRF-3, in contrast, was significantly blocked upon infection. Together the data presented here demonstrate that infection with C. trachomatis can drastically alter the cellular response to dsRNA and imply an impact of chlamydial infections on the outcome of viral super-infections. KW - Chlamydia trachomatis KW - Signaltransduktion KW - Immunreaktion KW - Doppelhelix KW - RNS KW - Apoptosis KW - Apoptose KW - doppelsträngige RNA KW - Immunantwort KW - Apoptosis KW - Chlamydia trachomatis KW - double-stranded RNA KW - innate immunity KW - signal transduction Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46474 ER -