TY - THES A1 - Bleier, Michael T1 - Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction T1 - Laserscanning unter Wasser - Refraktive Kalibrierung, Selbstkalibrierung und Kartierung zur 3D Rekonstruktion N2 - There is great interest in affordable, precise and reliable metrology underwater: Archaeologists want to document artifacts in situ with high detail. In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport. Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential. While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task. Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption. However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems. This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water. It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector. The prototype is configured with a motorized yaw axis for capturing scans from a tripod. Alternatively, it is mounted to a moving platform for mobile mapping. The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction. For highest accuracy, the refraction at the individual media interfaces must be taken into account. This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model. In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects. As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light. The system was successfully deployed in various configurations for both static scanning and mobile mapping. An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance. Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection. Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle. RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color. 3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks. The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective. N2 - Das Interesse an präziser, zuverlässiger und zugleich kostengünstiger Unterwassermesstechnik ist groß. Beispielsweise wollen Archäologen Artefakte in situ mit hoher Detailtreue dokumentieren und in der Meeresforschung benötigen Biologen Messwerkzeuge zur Beobachtung des Korallenwachstums. Auch Geologen sind auf Messdaten angewiesen, um Sedimenttransporte zu modellieren. Darüber hinaus ist für die Errichtung von Offshore-Bauwerken, sowie deren Wartung und Inspektion eine millimetergenaue Vermessung von vorhandenen Strukturen und Defekten unerlässlich. Während die Digitalisierung einzelner Objekte und ganzer Areale an Land gut erforscht ist und verschiedene Standardmethoden, wie zum Beispiel Structure from Motion oder terrestrisches Laserscanning, regelmäßig eingesetzt werden, ist die präzise und hochauflösende Unterwasservermessung nach wie vor eine komplexe und schwierige Aufgabe. Die Anwendung optischer Messtechnik im Wasser ist aufgrund der eingeschränkten Sichttiefe durch Trübung und Lichtabsorption eine Herausforderung. Optische Unterwasserscanner bieten jedoch Vorteile hinsichtlich der erreichbaren Auflösung und Genauigkeit gegenüber akustischen Systemen. In dieser Arbeit werden ein Unterwasser-Laserscanning-System und die Algorithmen zur Erzeugung von 3D-Scans mit hoher Punktdichte im Wasser vorgestellt. Es basiert auf Lasertriangulation und die optischen Hauptkomponenten sind eine Unterwasserkamera und ein Kreuzlinienlaserprojektor. Das System ist mit einer motorisierten Drehachse ausgestattet, um Scans von einem Stativ aus aufzunehmen. Alternativ kann es von einer beweglichen Plattform aus für mobile Kartierung eingesetzt werden. Das Hauptaugenmerk liegt auf der refraktiven Kalibrierung der Unterwasserkamera und des Laserprojektors, der Bildverarbeitung und der 3D-Rekonstruktion. Um höchste Genauigkeit zu erreichen, muss die Brechung an den einzelnen Medienübergängen berücksichtigt werden. Dies wird durch ein physikalisch-geometrisches Kameramodell, das auf einer analytischen Beschreibung der Strahlenverfolgung basiert, und ein optimierungsbasiertes Kalibrierverfahren erreicht. Neben dem Scannen von Unterwasserstrukturen wird in dieser Arbeit auch die 3D-Erfassung von teilweise im Wasser befindlichen Strukturen und die Korrektur der dabei auftretenden Brechungseffekte vorgestellt. Da die Kalibrierung im Wasser komplex und zeitintensiv ist, wird die Übertragung einer Kalibrierung des Scanners in Luft auf die Bedingungen im Wasser ohne Neukalibrierung, sowie die Selbstkalibrierung für Lichtschnittverfahren untersucht. Das System wurde in verschiedenen Konfigurationen sowohl für statisches Scannen als auch für die mobile Kartierung erfolgreich eingesetzt. Die Validierung der Kalibrierung und der 3D-Rekonstruktion anhand von Referenzobjekten und der Vergleich von Freiformflächen in klarem Wasser zeigen das hohe Genauigkeitspotenzial im Bereich von einem Millimeter bis weniger als einem Zentimeter in Abhängigkeit von der Messdistanz. Die mobile Unterwasserkartierung und Bewegungskompensation anhand visuell-inertialer Odometrie wird mit einem neuen optischen Unterwasserscanner auf Basis der Streifenprojektion demonstriert. Dabei ermöglicht die kontinuierliche Registrierung von Einzelscans die Erfassung von 3D-Modellen von einem Unterwasserfahrzeug aus. Mit Hilfe von parallel aufgenommenen RGB-Bildern werden dabei farbige 3D-Punktwolken der Unterwasserszenen erstellt. Diese 3D-Karten dienen beispielsweise dem Bediener bei der Fernsteuerung von Unterwasserfahrzeugen und bilden die Grundlage für Offshore-Inspektions- und Vermessungsaufgaben. Die fortschreitende Automatisierung der Messtechnik wird somit auch eine Verwendung durch Nichtfachleute ermöglichen und gleichzeitig die Erfassungszeit erheblich verkürzen und die Genauigkeit verbessern, was die Vermessung im Wasser kostengünstiger und effizienter macht. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 28 KW - Selbstkalibrierung KW - Punktwolke KW - Bildverarbeitung KW - 3D Reconstruction KW - Self-calibration KW - Underwater Scanning KW - Underwater Mapping KW - Dreidimensionale Rekonstruktion KW - 3D-Rekonstruktion Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322693 SN - 978-3-945459-45-4 ER - TY - THES A1 - Graetz [geb. Dittmann], Jonas T1 - X-Ray Dark-Field Tensor Tomography : a Hitchhiker's Guide to Tomographic Reconstruction and Talbot Imaging T1 - Röntgen-Dunkelfeld-Tensor-Tomographie : ein Handbuch zur Tomographischen Rekonstruktion und Talbot-Bildgebung N2 - X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques. To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis. N2 - Die Röntgen-Dunkelfeld-Bildgung vermag den Widerspruch zwischen dem Bedarf nach großen Sichtfeldern im Zentimeterbereich und der nötigen Bildauflösung zur Charakterisierung von Fasermaterialien mit Strukturgrößen im Mikrometerbereich aufzulösen. Sie bedient sich dafür der Eigenschaft von Röntgen-Talbot-Interferometern, Ultrakleinwinkelstreueigenschaften einer Probe vollflächig abzubilden, womit eine Lücke von mehreren Größenordnung zwischen der Bildauflösung und der konstrastgebenden Strukturgröße überbrückt werden kann. Der Zusammenhang zwischen Strukturanisotropie und gerichteter Streuung ermöglicht dabei Rückschlüsse auf die Orientierung der Mikrostruktur einer Probe unterhalb der Bildauflösung. Erste Demonstrationen haben, basiered auf verschiedenen heuristischen Signalmodellen und Rekonstruktrionsansätzen, die grundsätzliche Erweiterbarkeit auf die Volumen-Bildgebung gezeigt. In der vorliegenden Arbeit wird, aufbauend auf einer umfassenden Analyse der Dunkelfeld-Bildgebung und tomographischer Rekonstruktionsmethoden, sowohl ein verifiziertes Modell der Signalanisotropie als auch eine Rekonstruktionstechnik entwickelt, die für große tensorwertige Volumina und allgemeine Abbildungsgeometrien praktikabel ist. In diesem Sinne wird ein weites interdisziplinäres Feld von Bildgebungs- und Rekonstruktionsmethoden aufgearbeitet. Zunächst werden anhand einer neuen Einführung in die mathematische Beschreibung perspektivischer Projektionen essenzielle Einsichten in die Zusammenhänge zwischen der greifbaren Realraum-Darstellung der Kegelstrahl-Geometrie und ihrer technisch relevanten Beschreibung mittels homogener Koordinaten und Projektionsmatrizen gegeben. Aufbauend auf diesen Grundlagen wird eine neue Methode zur Auto-Kalibration entwickelt, die die praktische Bestimmung von perspektivischen Abbildungsgeometrien unter minimalen Anforderungen an die experimentelle Ausführung ermöglicht. Passend dazu wird eine verallgemeinerte Formulierung des weit verbreiteten Feldkamp-Algorithmus gegeben, um eine schnelle und flexible Volumenrekonstruktion aus beliebigen tomographischen Bildgebungsgeometrien zu ermöglichen. Iterative Rekonstruktionsverfahren werden ebenfalls für allgemeine Aufnahmegeometrien eingeführt, wobei ein Schwerpunkt auf der effizienten Berechnung des mit der tomographischen Bildgebung assoziierten Vorwärtsproblems liegt. Zu diesem Zweck wird eine hochperformante 3D-Erweiterung des klassischen, linear interpolierenden Linienintegrationsalgorithmus von Joseph entwickelt und mit typischen Alternativen verglichen. In Bezug auf die anisotrope Bildmodalität, die die Grundlage der Tensortomographie bildet, wird der Röntgen-Dunkelfeld-Kontrast umfassend besprochen. Die vorhandende Literatur wird dazu in einen gemeinsamen Kontext und eine gemeinsame Nomenklatur gebracht und mit neuen Überlegungen zu einer konsistenten Darstellung der Theorie zur Dunkelfeldsignalentstehung vervollständigt. Zentrale Ergebnisse werden dabei explizit anhand experimenteller Daten verifiziert, wobei besonders die Tomographie und die Eigenschaften anisotroper, faseriger Streuer im Vordergrund stehen. Um die ausgeprägte Empfindlichkeit interferometrischer Bilder auf feinste mechanische Instabilitäten zu kompensieren, wird ein effizientes Optimierungsverfahren zur Auswertung der Rohdaten aus Talbot-Interferometern entwickelt. Schließlich wird die Anwendbarkeit von linearen Tensor-Modellen in Bezug auf die hergeleiteten Anisotropie-Eigenschaften des Dunkelfeld-Kontrastes diskutiert, und ein iteratives Verfahren für die Rekonstruktion tensorwertiger Volumen aus Projektionsbildern vorgeschlagen. Die entwickelten Methoden werden effizient implementiert und auf Proben aus faserverstärktem Kunstoff angewandt, die dafür an der Bildgebungs-Strahllinie ID19 des Europäischen Synchrotrons ESRF abgebildet wurden. Die Ergebnisse stellen eine bisher einmalige Demonstration von Röntgen-Dunkelfeld-Tensor-Tomographie mit einem Sichtfeld von 3-4cm dar, wobei lokale Faserorientierung sowohl für komplex geformte als auch kontrastarme Objekte mit einer räumlichen Auflösung von 0.1mm in 3D dargestellt werden kann. Ein unabhängiger Vergleich mit Mikro-CT basierter Faser-Analyse bestätigt die Ergebnisse. KW - Dreidimensionale Rekonstruktion KW - Tomografie KW - Faserorientierung KW - Tensor KW - Bildgebendes Verfahren KW - X-Ray Dark-Field KW - Tensor Tomography KW - Volume Reconstruction KW - Fiber Orientation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281437 ER - TY - THES A1 - Hassouneh, Mohammed H. T1 - Interpretation of Potential Fields by Modern Data Processing and 3-dimensional gravity Modeling of the Dead Sea Pull-Apart Basin / Jordan Rift Valley (JRV) N2 - This work presents the analysis, 3D modeling and interpretation of gravity and aeromagnetic data of Jordan and Middle East. The potential field data delineate the location of the major faults, basins, swells, anticlines, synclines and domes in Jordan. The surface geology of Jordan and the immediate area east of the Rift is dominated by two large basins, the Al-Jafr basin in the south and the Al-Azraq-Wadi as Sirhan basin to the northeast. These two basins strike southeast-northwest and are separated by an anticlinal axis, the Kilwah-Bayir swell. The Karak Wadi El Fayha fault system occurs along the western flank of the swell. The Swaqa fault occurs on the southwest hinge of Al-Azraq basin and the Fuluq fault occurs on its northeast hinge. In the south west of Jordan, Wadi Utm-Quwaira and Disi-Mudawara fault zones are shown clearly in the aeromagnetic and gravity maps. The previous major faults are well correlated with the structural map of Jordan published by Bender (1968). 3D modeling of gravity data in the Dead Sea basin (DSB) was used together with existing geological and geophysical information to give a complete structural picture of the basin. The 3D models of the DSB show that the internal structure of the Dead Sea basin (DSB) is controlled by longitudinal faults and the basin is developed as a full graben bounded by sub-vertical faults along its long sides. In the northern planes of the 3D model, the accumulation of Quaternary (salt and marl) and Mesozoic (pre-rift) sediments are thinner than in the central and southern planes of the model. In the northern planes, the thickness of the Quaternary sediments is about 4 km, 5 km in the southern planes and it exceeds 8 km in the central planes of the DSR. The thickness of the pre-rift sediments reaches 10-12 km in the northern and southern planes and exceeds 15 km in the central planes of the DSR. The planes of the 3D models show that the depth to the crystalline basement under the eastern shoulders of the DSR is shallower than those beneath the western shoulders. It is about 3-5 km beneath the eastern shoulders and 7-9 km under the western shoulder of the DSR. The gravity anomaly maps of residual and first derivative gravity delineate the subsurface basins of widely varying size, shape, and depth along the Rift Valley. The basins are created by the combination of the lateral motion along a right-tending step over and normal faulting along the opposite sides. Al Bakura basin occupies the upper Jordanian River valley and extends into the southern Tiberias Lake. Bet Shean basin to the south of Al Bakura basin plunges asymmetrically toward the east. The Damia basin, comprising the central Jordan Valley and Jericho areas to the north of the Dead Sea is shallow basin (~600-800m deep). The Lisan basin is the deepest basin in the Rift. The 3D gravity models indicate a maximum of ~12 km of basin fill. Three basins are found in Wadi Araba area, Gharandal, Timna (Qa'-Taba) and Aqaba (Elat) basin. The three basins become successively wider and deeper to the south. The three regional gravity long E-W profiles (225 km) from the Mediterranean Sea crossing the Rift Valley to the east to the Saudi Arabia borders, show the positive correlation between topography and free air anomaly and strong negative Bouguer anomaly under the central part of the Dead Sea Basin (DSB) and normal regional Bouguer anomaly outside of the DSB in the transform valley. Depth to the top of the bedrock in the under ground of Jordan was calculated from potential field data. The basement crops out in the south west of Jordan and becomes deeper to northwards and eastwards to be about ~ 8 km below ground surface in the Risha area. N2 - In der vorliegenden Arbeit wird die Analyse gravimetrischer und aeromagnetischer Daten aus dem Gebiet Jordaniens und des umgebenden Teils des mittleren Ostens mittels 3D Modellierung vorgestellt. Die Variationen der Potentialfelder folgen systematisch den Hauptstörungen, Becken, Schwellen, Faltenstrukturen und Dome in Jordanien. Die Oberflächengeologie Jordaniens und der Gebiete unmittelbar östlich der Riftzone werden von zwei großen Beckenstrukturen dominiert: Das Al-Jafr Becken im Süden und das Al-Azraq-Wadi (auch Sirhan Becken) im Nordosten. Diese Becken streichen SE-NW und sind durch eine Antiklinalstruktur, die Kilwah-Bayir Schwelle separiert. Das Karak Wadi El Fayha Störungssystem liegt im Bereich der westlichen Flanke der Schwelle. Im Südwesten grenzt die Swaqa Störung, im Nordosten die Fuluq Störung das Al al-Azraq Becken ab. Im Südwesten Jordaniens können auf den erstellten aeromagnetischen und gravimetrischen Plänen klar die prominenten Stö- rungszonen Wadi Utm-Quwaira und Disi-Mudwara nachgewiesen werden. Alle diese geophysikalisch indizierten tektonischen Elemente korrelieren gut mit den geologischen Aufnahmen von Bender (1968). 3D Modellierung der gravimetrischen Anomalie des Toten Meer Beckens (DSB) im GIS mit geologischer, seismischer und (Bohrloch) geophysikalischer Information wurde eingesetzt, um eine komplette Darstellung der Strukturen des Beckens zu erzielen. Die 3D-Modelle des DSB zeigen, dass die interne Beckenstruktur von Längsstörungen kontrolliert werden und das Becken als Vollgraben ausgebildet ist. Beide Grabenflanken werden von subvertikalen Randbrüchen begrenzt. In den Nord- Schnitten des Modells ergeben sich für die Akkumulation der Quartären Grabenfüllung (Salz und Mergel) mit etwa 4 km ebenso wie der der Mesozoischen (prä-Rift) Sedimente mit etwa 10 km geringere Mächtigkeiten als in den südlichen Schnitten. Hier liegen die Mächtigkeiten der Quartären Grabenfüllung bei etwa 5 km und die des Mesozoikums bei über 12 km. Die maximale Mächtigkeiten werden allerdings in zentralen Schnittlagen des Modells errechnet, wo das Quartär mit über 8 km und das mesozoikum mit über 15 km modelliert wurde. Im Modell des DSB liegt das kristalline Basement in der östlichen Grabenschulter mit 3-5 km deutlich flacher als mit 7-9 km unter der westlichen Grabenschulter. Die Anomaliepläne der Schwere, sowie die der ersten Ableitung weisen auf viele, oberflächlich nicht erkennbare Teilbeckenstrukturen im Verlauf des Riftes hin. Diese Becken werden durch die Kombination der Blattverschiebung mit dextralem "Stepp over" und Abschiebungen erklärt. Das Al Bakura Becken nimmt den oberen Bereich des Jordan Tales ein und dehnt sich bis in den Bereich des Tiberias See aus. Das südlich anschließende Bet Shean Becken taucht assymetrisch nach Ost ab. Das Damia Becken, im zentralen Jordan Tal und im Gebiet von Jericho, oberhalb des Toten Meeres gelegen, ist mit einer Tiefe von 600-800m eine sehr flache Struktur. Im nach Süden anschließenden Lisan Becken kann nach der Modellierung eine Sedimentfüllung von etwa 12 km angenommen werden. Im Bereich des Wadi Araba konnten drei weitere Becken wurden aus der Modellierung abgeleitet werden (Gharandal, Timna (Qa-Taba) und Aqaba (Elat), die alle zum Süden hin weiter und tiefer werden. Die drei regionalen E-W Schwereprofile (225 km Gesamtlänge) vom Mittelmeer über das Tote Meer bis zur Grenze von Saudi Arabien zeigen eine positive Korrelation zwischen der Topographie und der Freiluftanomalie sowie eine starker negative Bougueranomalie im Bereich des zentralen DSB. Außerhalb des DSB im Rifttal ist die Bouguerschwere normal. Die Tiefenlage der Kristallinbasis im Untergrund von Jordanien wurde aus den Daten der Aeromagnetik berechnet. Das Basement ist im Südwesten Jordanien aufgeschlossen und seine Tiefenlage nimmt sukzessive nach Norden und Osten auf etwa 8 km im Raum von Risha zu. KW - Jordantal KW - Grabenbruch KW - Becken KW - Dreidimensionale Rekonstruktion KW - Totes Meer Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4834 ER -